⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slavio_timer.c.svn-base

📁 我们自己开发的一个OSEK操作系统!不知道可不可以?
💻 SVN-BASE
字号:
/* * QEMU Sparc SLAVIO timer controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */#include "hw.h"#include "sun4m.h"#include "qemu-timer.h"//#define DEBUG_TIMER#ifdef DEBUG_TIMER#define DPRINTF(fmt, args...) \do { printf("TIMER: " fmt , ##args); } while (0)#else#define DPRINTF(fmt, args...)#endif/* * Registers of hardware timer in sun4m. * * This is the timer/counter part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 * are zero. Bit 31 is 1 when count has been reached. * * Per-CPU timers interrupt local CPU, system timer uses normal * interrupt routing. * */#define MAX_CPUS 16typedef struct SLAVIO_TIMERState {    qemu_irq irq;    ptimer_state *timer;    uint32_t count, counthigh, reached;    uint64_t limit;    // processor only    int running;    struct SLAVIO_TIMERState *master;    int slave_index;    // system only    unsigned int num_slaves;    struct SLAVIO_TIMERState *slave[MAX_CPUS];    uint32_t slave_mode;} SLAVIO_TIMERState;#define TIMER_MAXADDR 0x1f#define SYS_TIMER_SIZE 0x14#define CPU_TIMER_SIZE 0x10#define SYS_TIMER_OFFSET      0x10000ULL#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)#define TIMER_LIMIT         0#define TIMER_COUNTER       1#define TIMER_COUNTER_NORST 2#define TIMER_STATUS        3#define TIMER_MODE          4#define TIMER_COUNT_MASK32 0xfffffe00#define TIMER_LIMIT_MASK32 0x7fffffff#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL#define TIMER_MAX_COUNT32  0x7ffffe00ULL#define TIMER_REACHED      0x80000000#define TIMER_PERIOD       500ULL // 500ns#define LIMIT_TO_PERIODS(l) ((l) >> 9)#define PERIODS_TO_LIMIT(l) ((l) << 9)static int slavio_timer_is_user(SLAVIO_TIMERState *s){    return s->master && (s->master->slave_mode & (1 << s->slave_index));}// Update count, set irq, update expire_time// Convert from ptimer countdown unitsstatic void slavio_timer_get_out(SLAVIO_TIMERState *s){    uint64_t count, limit;    if (s->limit == 0) /* free-run processor or system counter */        limit = TIMER_MAX_COUNT32;    else        limit = s->limit;    if (s->timer)        count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));    else        count = 0;    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,            s->counthigh, s->count);    s->count = count & TIMER_COUNT_MASK32;    s->counthigh = count >> 32;}// timer callbackstatic void slavio_timer_irq(void *opaque){    SLAVIO_TIMERState *s = opaque;    slavio_timer_get_out(s);    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);    if (!slavio_timer_is_user(s)) {        s->reached = TIMER_REACHED;        qemu_irq_raise(s->irq);    }}static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr){    SLAVIO_TIMERState *s = opaque;    uint32_t saddr, ret;    saddr = (addr & TIMER_MAXADDR) >> 2;    switch (saddr) {    case TIMER_LIMIT:        // read limit (system counter mode) or read most signifying        // part of counter (user mode)        if (slavio_timer_is_user(s)) {            // read user timer MSW            slavio_timer_get_out(s);            ret = s->counthigh;        } else {            // read limit            // clear irq            qemu_irq_lower(s->irq);            s->reached = 0;            ret = s->limit & TIMER_LIMIT_MASK32;        }        break;    case TIMER_COUNTER:        // read counter and reached bit (system mode) or read lsbits        // of counter (user mode)        slavio_timer_get_out(s);        if (slavio_timer_is_user(s)) // read user timer LSW            ret = s->count & TIMER_COUNT_MASK32;        else // read limit            ret = (s->count & TIMER_MAX_COUNT32) | s->reached;        break;    case TIMER_STATUS:        // only available in processor counter/timer        // read start/stop status        ret = s->running;        break;    case TIMER_MODE:        // only available in system counter        // read user/system mode        ret = s->slave_mode;        break;    default:        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);        ret = 0;        break;    }    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);    return ret;}static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,                                    uint32_t val){    SLAVIO_TIMERState *s = opaque;    uint32_t saddr;    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);    saddr = (addr & TIMER_MAXADDR) >> 2;    switch (saddr) {    case TIMER_LIMIT:        if (slavio_timer_is_user(s)) {            // set user counter MSW, reset counter            qemu_irq_lower(s->irq);            s->limit = TIMER_MAX_COUNT64;            DPRINTF("processor %d user timer reset\n", s->slave_index);            if (s->timer)                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);        } else {            // set limit, reset counter            qemu_irq_lower(s->irq);            s->limit = val & TIMER_MAX_COUNT32;            if (s->timer) {                if (s->limit == 0) /* free-run */                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);                else                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);            }        }        break;    case TIMER_COUNTER:        if (slavio_timer_is_user(s)) {            // set user counter LSW, reset counter            qemu_irq_lower(s->irq);            s->limit = TIMER_MAX_COUNT64;            DPRINTF("processor %d user timer reset\n", s->slave_index);            if (s->timer)                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);        } else            DPRINTF("not user timer\n");        break;    case TIMER_COUNTER_NORST:        // set limit without resetting counter        s->limit = val & TIMER_MAX_COUNT32;        if (s->timer) {            if (s->limit == 0)	/* free-run */                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);            else                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);        }        break;    case TIMER_STATUS:        if (slavio_timer_is_user(s)) {            // start/stop user counter            if ((val & 1) && !s->running) {                DPRINTF("processor %d user timer started\n", s->slave_index);                if (s->timer)                    ptimer_run(s->timer, 0);                s->running = 1;            } else if (!(val & 1) && s->running) {                DPRINTF("processor %d user timer stopped\n", s->slave_index);                if (s->timer)                    ptimer_stop(s->timer);                s->running = 0;            }        }        break;    case TIMER_MODE:        if (s->master == NULL) {            unsigned int i;            for (i = 0; i < s->num_slaves; i++) {                if (val & (1 << i)) {                    qemu_irq_lower(s->slave[i]->irq);                    s->slave[i]->limit = -1ULL;                } else {                    ptimer_stop(s->slave[i]->timer);                }                if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {                    ptimer_stop(s->slave[i]->timer);                    ptimer_set_limit(s->slave[i]->timer,                                     LIMIT_TO_PERIODS(s->slave[i]->limit), 1);                    DPRINTF("processor %d timer changed\n",                            s->slave[i]->slave_index);                    ptimer_run(s->slave[i]->timer, 0);                }            }            s->slave_mode = val & ((1 << s->num_slaves) - 1);        } else            DPRINTF("not system timer\n");        break;    default:        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);        break;    }}static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {    NULL,    NULL,    slavio_timer_mem_readl,};static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {    NULL,    NULL,    slavio_timer_mem_writel,};static void slavio_timer_save(QEMUFile *f, void *opaque){    SLAVIO_TIMERState *s = opaque;    qemu_put_be64s(f, &s->limit);    qemu_put_be32s(f, &s->count);    qemu_put_be32s(f, &s->counthigh);    qemu_put_be32s(f, &s->reached);    qemu_put_be32s(f, &s->running);    if (s->timer)        qemu_put_ptimer(f, s->timer);}static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id){    SLAVIO_TIMERState *s = opaque;    if (version_id != 3)        return -EINVAL;    qemu_get_be64s(f, &s->limit);    qemu_get_be32s(f, &s->count);    qemu_get_be32s(f, &s->counthigh);    qemu_get_be32s(f, &s->reached);    qemu_get_be32s(f, &s->running);    if (s->timer)        qemu_get_ptimer(f, s->timer);    return 0;}static void slavio_timer_reset(void *opaque){    SLAVIO_TIMERState *s = opaque;    s->limit = 0;    s->count = 0;    s->reached = 0;    s->slave_mode = 0;    if (!s->master || s->slave_index < s->master->num_slaves) {        ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);        ptimer_run(s->timer, 0);    }    s->running = 1;    qemu_irq_lower(s->irq);}static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,                                            qemu_irq irq,                                            SLAVIO_TIMERState *master,                                            int slave_index){    int slavio_timer_io_memory;    SLAVIO_TIMERState *s;    QEMUBH *bh;    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));    if (!s)        return s;    s->irq = irq;    s->master = master;    s->slave_index = slave_index;    if (!master || slave_index < master->num_slaves) {        bh = qemu_bh_new(slavio_timer_irq, s);        s->timer = ptimer_init(bh);        ptimer_set_period(s->timer, TIMER_PERIOD);    }    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,                                                    slavio_timer_mem_write, s);    if (master)        cpu_register_physical_memory(addr, CPU_TIMER_SIZE,                                     slavio_timer_io_memory);    else        cpu_register_physical_memory(addr, SYS_TIMER_SIZE,                                     slavio_timer_io_memory);    register_savevm("slavio_timer", addr, 3, slavio_timer_save,                    slavio_timer_load, s);    qemu_register_reset(slavio_timer_reset, s);    slavio_timer_reset(s);    return s;}void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,                           qemu_irq *cpu_irqs, unsigned int num_cpus){    SLAVIO_TIMERState *master;    unsigned int i;    master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);    master->num_slaves = num_cpus;    for (i = 0; i < MAX_CPUS; i++) {        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)                                             CPU_TIMER_OFFSET(i),                                             cpu_irqs[i], master, i);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -