📄 motion_estimation_2d.m
字号:
function [totaltime,avgMBSearch,avgMAD,avgMSE,PSNR]=Motion_Estimation_2D(algorithm,Target_Img,Anchor_Img,Img_Height,Img_Width,BlockSize,rangs,range,K,figureon,debug)
%function [totaltime,avgMBSearch,avgMAD,avgMSE,PSNR]=Motion_Estimation_2D(algorithm,Target_Img,Anchor_Img,Img_Height,Img_Width,BlockSize,rangs,range,K,figureon,debug)
%
%Motion_Estimation_2D compute Motion Vectors in Anchor Frame from Target Frame in either integer or half-pel accuracy
%An example of main function calling this function is "MEMBA", which can be entered on the command window.
%The function also use the function "EBMA" for motion estimation of every macroblock
% TargetName,AnchorName:
% File Names of Target Frame and Anchor Frame
% Img_Height,Img_Width:
% Image Height and Width of a Frame
% BlockSize:
% The size of Macro Block in Frame is BlockSize(1) by BlockSize(2)
% rangs,range:
% The Search Field in Frame A is from (rangs(1),rangs(2)) to (range(1),range(2))
% K:
% The search accuracy: 1 integer pel 2 half pel
% Target_Img,Anchor_Img,Predict_Img:
% Image Matrix for Target Frame, Anchor Frame, Predicted Frame
% ox,oy,px,py:
% The location of Motion vector is (ox,oy), (px,py) for the direction
% PSNR
% The peak signal and noise ratio between original image and predicted image
% Author: Xiaofeng Xu, Polytechnic University 4/21/2002
% totaltime:
% The total time of ME algorithm execution between original and predicted images (platform depended)
% avgMBSearch:
% The average number of Macro Block matching stages between original and predicted images
% avgMAD:
% The average MAD between original and predicted images
% avgMSE:
% The average MSE between original and predicted images
% MBsearch:
% The number of search stages for each Macro Block (for debug mode only)
% MAD:
% The MAD for each Macro Block (for debug mode only)
% debug:
% The debug mode (if debug==1 the MAD and the MB_search matrices are printed)
% Author: Evgeny Kaminsky, Ben Gurion University 12/18/2002
%fid = fopen(Target_Img,'r');
%Target_Img= fread(fid,[Img_Height,Img_Width]);
%fclose(fid);
Target_Img=double(Target_Img);
%fid = fopen(Anchor_Img,'r');
%Anchor_Img= fread(fid,[Img_Height,Img_Width]);
%fclose(fid);
Anchor_Img=double(Anchor_Img);
if(figureon)
figure;
imshow(uint8(Target_Img));
title('Target Image')
end
t=0;
c_MB_search=0;
Predict_Img=Target_Img;
t0 = clock;
%Upsample the Target_Img for half-pel search
if K==2
Up_Target_Img=zeros(Img_Height*2,Img_Width*2);
Up_Target_Img(1:2:Img_Height*2,1:2:Img_Width*2)=Target_Img;
Up_Target_Img(1:2:Img_Height*2-1,2:2:Img_Width*2-1)=(Target_Img(:,1:Img_Width-1)+Target_Img(:,2:Img_Width))/2;
Up_Target_Img(2:2:Img_Height*2-1,1:2:Img_Width*2-1)=(Target_Img(1:Img_Height-1,:)+Target_Img(2:Img_Height,:))/2;
Up_Target_Img(2:2:Img_Height*2-1,2:2:Img_Width*2-1)=(Target_Img(1:Img_Height-1,1:Img_Width-1)+Target_Img(1:Img_Height-1,2:Img_Width)+Target_Img(2:Img_Height,1:Img_Width-1)+Target_Img(2:Img_Height,2:Img_Width))/4;
Target_Imgbak=Target_Img;
Target_Img=Up_Target_Img;
t=1;
end
m=1;
%Search for all the blocks in Anchor Images.
for i=1:BlockSize(1):Img_Height-BlockSize(1)+1
%Caculate Index for 'MB_search' and 'MAD'
ni=floor((i-1)/BlockSize(1)+1);
%Caculate the search range in Target Images.
RangeStart(1)=i*K-t+rangs(1)*K;
RangeEnd(1)=i*K-t+BlockSize(1)*K-1+range(1)*K;
if RangeStart(1)<1
RangeStart(1)=1;
end
if RangeEnd(1)>Img_Height*K
RangeEnd(1)=Img_Height*K;
end
for j=1:BlockSize(2):Img_Width-BlockSize(2)+1
%Calculate Index for 'MB_search' and 'MAD'
nj=floor((j-1)/BlockSize(2)+1);
%Caculate the search range in Target Images.
RangeStart(2)=j*K-t+rangs(2)*K;
RangeEnd(2)=j*K-t+BlockSize(2)*K-1+range(2)*K;
if RangeStart(2)<1
RangeStart(2)=1;
end
if RangeEnd(2)>Img_Width*K
RangeEnd(2)=Img_Width*K;
end
%Get the best estimation from Target Image.
% [px(m), py(m), Predict_Img(i:i+BlockSize(1)-1,j:j+BlockSize(2)-1),SAD(ni,nj),MB_search]=EBMA(Target_Img,Anchor_Img,BlockSize,[i,j],RangeStart,RangeEnd,K);
switch algorithm
case 'EBMA'
[px(m), py(m),MB_search(ni,nj),Predict_Img(i:i+BlockSize(1)-1,j:j+BlockSize(2)-1),SAD]=EBMA(Target_Img,Anchor_Img,BlockSize,[i,j],RangeStart,RangeEnd,K);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Add there your ME algorithm!!! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% case 'ME_algorithm'
% [px(m), py(m),MB_search(ni,nj),Predict_Img(i:i+BlockSize(1)-1,j:j+BlockSize(2)-1),SAD]=ME_algorithm(Target_Img,Anchor_Img,BlockSize,[i,j],RangeStart,RangeEnd,K);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
c_MB_search=MB_search(ni,nj)+c_MB_search;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Debug mode
if (debug)
MAD(ni,nj)=SAD/(BlockSize(1)*BlockSize(2));
end
ox(m)=j+BlockSize(2)/2;
oy(m)=i+BlockSize(1)/2;
m=m+1;
% j
% i
end
end
%Caculate the total time
totaltime=etime(clock,t0);
imgsize = Img_Height*Img_Width;
%Caculate the error image
Error_Img=Anchor_Img-Predict_Img;
totalerror=sum(sum(abs(Error_Img)));
%Caculate avgMAD
avgMAD=totalerror/imgsize;
%Caculate avgMSE
avgMSE=mean(mean(Error_Img.^2));
%Caculate PSNR
PSNR=10*log10(255*255/avgMSE);
MB_total=imgsize/(BlockSize(1)*BlockSize(2));
%Caculate avgMBSearch
avgMBSearch = c_MB_search/MB_total;
%debug mode
if (debug)
MB_search
MAD
end
if(figureon)
figure;
imshow(uint8(Anchor_Img));
title('Anchor Image')
hold on
quiver(ox,oy,px,py);
hold off
axis image
figure;
imshow(uint8(Predict_Img));
title('Prediction Image')
figure;
imshow(uint8(Error_Img));
title('Error Image')
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -