📄 the delayed mathieu equation.m
字号:
clear
%% parameters
epsilon=1; % amplitude
kappa=0; % damping
stx=200;
sty=100; % steps of b
b_st=-1.5; % starting value for b
b_fi=1.5; % final value for b
delta_st=-1; % starting value for
delta_fi=5; % final value for
%% computational parameters
k=40; % number of discretization intervals over
fix k=20; % number of integration interval in each step
T=2*pi; % time period
dt=T/k; % discretization interval length
ddt=dt/k; % integration interval length
tau=2*pi; % time delay
m=floor((tau+dt/2)/dt);
wa=(m*dt+dt/2-tau)/dt;
wb=(tau+dt/2-m*dt)/dt;
D=zeros(m+2,m+2);
d=ones(m+1,1);
d(1:2)=0;
D=D+diag(d,-1);
D(3,1)=1;
for i=1:k
c(i)=sum(cos(((i-1)*2*pi/k):ddt:((i-1)*2*pi/k+ddt*(k-1))))/k;
end
%% strat of computation
for y=1:sty+1 % loop for b
b=b_st+(y-1)*(delta_fi-delta_st)/sty;
for x=1:stx+1 % loop for
delta=delta_st+(x-1)*(delta_fi-delta_st)/stx;
Fi=eye(m+2,m+2);
%% construct transition matrix Fi
for i=1:k
A=zeros(2,2); % matrix Ai
A(1,2)=1;
A(2,1)=-delta-epsilon*c(i);
A(2,2)=-kappa;
B=zeros(2,2); % matrix B
B(2,1)=b;
P=expm(A*dt); % matrix Pi
R=(expm(A*dt)-eye(2))*inv(A)*B;
D(1:2,1:2)=P;
D(1:2,m+1)=wa*R(1:2,1:1);
D(1:2,m+2)=wb*R(1:2,1:1);
Fi=D*Fi; % Floquet transition matrix
end
delta_m(x,y)=delta; % matrix of
b_m(x,y)=b; % matrix of b
ei_m(x,y)=max(abs(eig(Fi))); % matrix of eigenvalues
end
sty+1-y % counter
end
figure
contour(delta_m,b_m,ei_m,[1,1],'k')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -