📄 main.cpp
字号:
#define WIN32_LEAN_AND_MEAN // trim the excess fat from Windows
/*******************************************************************
* Program: Chapter 6 Light Example 3: Moving and Rotating Lights
* OpenGL Game Programming
* Author: Kevin Hawkins
* Description: Shows a rotating cube with spotlight and a point
* light rotating around it. User can press
* keys to change the color of the point light:
* [R] - Red, [G] - Green, [B] - Blue, [S] - Turn spotlight on/off
********************************************************************/
////// Includes
#include <windows.h> // standard Windows app include
#include <gl/gl.h> // standard OpenGL include
#include <gl/glu.h> // OpenGL utilties
#include <gl/glaux.h> // OpenGL auxiliary functions
////// Global Variables
float angle = 0.0f; // current angle of the rotating triangle
HDC g_HDC; // global device context
bool fullScreen = false; // true = fullscreen; false = windowed
bool keyPressed[256]; // holds true for keys that are pressed
// Red, Green, and Blue light positions
float lightPositionR[] = { 0.0f, 0.0f, 75.0f, 1.0f };
float lightPositionG[] = { 0.0f, 0.0f, 75.0f, 1.0f };
float lightPositionB[] = { 0.0f, 0.0f, 75.0f, 1.0f };
// Red, Green, and Blue ambient light intensities
float diffuseLightR[] = { 1.0f, 0.0f, 0.0f, 1.0f };
float diffuseLightG[] = { 0.0f, 1.0f, 0.0f, 1.0f };
float diffuseLightB[] = { 0.0f, 0.0f, 1.0f, 1.0f };
// Red, Green, and Blue specular light intensities
float specularLightR[] = { 1.0f, 0.0f, 0.0f, 1.0f };
float specularLightG[] = { 0.0f, 1.0f, 0.0f, 1.0f };
float specularLightB[] = { 0.0f, 0.0f, 1.0f, 1.0f };
// Spotlight's direction
float spotDirection[] = { 0.0f, 0.0f, -1.0f };
// World light properties: diffuse, specular, position
float diffuseLight[] = { 0.5f, 0.5f, 0.5f, 1.0f };
float specularLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };
float lightPosition[] = { 0.0f, 0.0f, 100.0f, 1.0f };
float objectXRot; // the cube's x rotation
float objectYRot; // the cube's y rotation
float objectZRot; // the cube's z rotation
float redXRot; // red light x rotation
float redYRot; // red light y rotation
int currentColor = 1; // 1 = red, 2 = green, 3 = blue
bool spotEnabled = true; // true = on; false = off
// Initialize
// desc: initializes OpenGL
void Initialize()
{
glShadeModel(GL_SMOOTH); // use smooth shading
glEnable(GL_DEPTH_TEST); // hidden surface removal
glEnable(GL_CULL_FACE); // do not calculate inside of poly's
glFrontFace(GL_CCW); // counter clock-wise polygons are out
glEnable(GL_LIGHTING); // enable lighting
// LIGHT0 is the spotlight.
// It points from (0.0, 0.0, 100.0) down the
// negative z-axis.
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);
glLightfv(GL_LIGHT0, GL_SPECULAR, specularLight);
glLightfv(GL_LIGHT0, GL_POSITION, lightPosition);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 40.0f);
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, 80.0f);
// LIGHT1 is our moving point light
// It starts out as a red light.
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuseLightR);
glLightfv(GL_LIGHT1, GL_SPECULAR, specularLightR);
glLightfv(GL_LIGHT1, GL_POSITION, lightPositionR);
// Enable our lights
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
// Use color tracking for material properties
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
// we want a very shiny effect on the cube
glMaterialfv(GL_FRONT, GL_SPECULAR, specularLight);
glMateriali(GL_FRONT, GL_SHININESS, 128);
// Clear background to black
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
}
// Render
// desc: handles drawing of scene
void Render()
{
// clear screen and depth buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// reset modelview matrix
glLoadIdentity();
// Move everything back to (0, 0, -150)
glTranslatef(0.0f, 0.0f, -150.0f);
glPushMatrix();
// rotate along the x and y axes
glRotatef(redYRot, 0.0f, 1.0f, 0.0f);
glRotatef(redXRot, 1.0f, 0.0f, 0.0f);
// place the light in the world
glLightfv(GL_LIGHT1, GL_POSITION, lightPositionR);
switch (currentColor)
{
case 1: // red light
{
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuseLightR);
glLightfv(GL_LIGHT1, GL_POSITION, lightPositionR);
glLightfv(GL_LIGHT1, GL_SPECULAR, specularLightR);
// translate to draw the light's sphere
glTranslatef(lightPositionR[0], lightPositionR[1], lightPositionR[2]);
glColor3f(1.0f, 0.0f, 0.0f);
break;
}
case 2: // green light
{
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuseLightG);
glLightfv(GL_LIGHT1, GL_POSITION, lightPositionG);
glLightfv(GL_LIGHT1, GL_SPECULAR, specularLightG);
// translate to draw the light's sphere
glTranslatef(lightPositionG[0], lightPositionG[1], lightPositionG[2]);
glColor3f(0.0f, 1.0f, 0.0f);
break;
}
case 3: // blue light
{
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuseLightB);
glLightfv(GL_LIGHT1, GL_POSITION, lightPositionB);
glLightfv(GL_LIGHT1, GL_SPECULAR, specularLightB);
// translate to draw the light's sphere
glTranslatef(lightPositionB[0], lightPositionB[1], lightPositionB[2]);
glColor3f(0.0f, 0.0f, 1.0f);
break;
}
}
// Save the lighting attributes
glPushAttrib(GL_LIGHTING_BIT);
glDisable(GL_LIGHTING); // disable lighting when we draw the sphere
auxSolidSphere(2.5f); // so the sphere is not affected by any lights
glEnable(GL_LIGHTING);
glPopAttrib(); // restore the lighting attributes
glPopMatrix();
// Draw the rotating cube
glPushMatrix();
glColor3f(1.0f, 1.0f, 1.0f);
glRotatef(objectXRot, 1.0f, 0.0f, 0.0f);
glRotatef(objectYRot, 0.0f, 1.0f, 0.0f);
glRotatef(objectZRot, 0.0f, 0.0f, 1.0f);
auxSolidCube(70.0f);
glPopMatrix();
glFlush();
SwapBuffers(g_HDC); // bring backbuffer to foreground
// increase rotation values
objectXRot += 0.01f;
objectYRot += 0.02f;
objectZRot += 0.01f;
redXRot += 0.3f;
redYRot += 0.1f;
}
// function to set the pixel format for the device context
void SetupPixelFormat(HDC hDC)
{
int nPixelFormat; // our pixel format index
static PIXELFORMATDESCRIPTOR pfd = {
sizeof(PIXELFORMATDESCRIPTOR), // size of structure
1, // default version
PFD_DRAW_TO_WINDOW | // window drawing support
PFD_SUPPORT_OPENGL | // OpenGL support
PFD_DOUBLEBUFFER, // double buffering support
PFD_TYPE_RGBA, // RGBA color mode
32, // 32 bit color mode
0, 0, 0, 0, 0, 0, // ignore color bits, non-palettized mode
0, // no alpha buffer
0, // ignore shift bit
0, // no accumulation buffer
0, 0, 0, 0, // ignore accumulation bits
16, // 16 bit z-buffer size
0, // no stencil buffer
0, // no auxiliary buffer
PFD_MAIN_PLANE, // main drawing plane
0, // reserved
0, 0, 0 }; // layer masks ignored
nPixelFormat = ChoosePixelFormat(hDC, &pfd); // choose best matching pixel format
SetPixelFormat(hDC, nPixelFormat, &pfd); // set pixel format to device context
}
// the Windows Procedure event handler
LRESULT CALLBACK WndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
static HGLRC hRC; // rendering context
static HDC hDC; // device context
int width, height; // window width and height
switch(message)
{
case WM_CREATE: // window is being created
hDC = GetDC(hwnd); // get current window's device context
g_HDC = hDC;
SetupPixelFormat(hDC); // call our pixel format setup function
// create rendering context and make it current
hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);
return 0;
break;
case WM_CLOSE: // windows is closing
// deselect rendering context and delete it
wglMakeCurrent(hDC, NULL);
wglDeleteContext(hRC);
// send WM_QUIT to message queue
PostQuitMessage(0);
return 0;
break;
case WM_SIZE:
height = HIWORD(lParam); // retrieve width and height
width = LOWORD(lParam);
if (height==0) // don't want a divide by zero
{
height=1;
}
glViewport(0, 0, width, height); // reset the viewport to new dimensions
glMatrixMode(GL_PROJECTION); // set projection matrix current matrix
glLoadIdentity(); // reset projection matrix
// calculate aspect ratio of window
gluPerspective(54.0f,(GLfloat)width/(GLfloat)height,1.0f,1000.0f);
glMatrixMode(GL_MODELVIEW); // set modelview matrix
glLoadIdentity(); // reset modelview matrix
return 0;
break;
case WM_KEYDOWN: // is a key pressed?
keyPressed[wParam] = true;
return 0;
break;
case WM_KEYUP:
keyPressed[wParam] = false;
return 0;
break;
default:
break;
}
return (DefWindowProc(hwnd, message, wParam, lParam));
}
// the main windows entry point
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd)
{
WNDCLASSEX windowClass; // window class
HWND hwnd; // window handle
MSG msg; // message
bool done; // flag saying when our app is complete
DWORD dwExStyle; // Window Extended Style
DWORD dwStyle; // Window Style
RECT windowRect;
// temp var's
int width = 800;
int height = 600;
int bits = 32;
//fullScreen = TRUE;
windowRect.left=(long)0; // Set Left Value To 0
windowRect.right=(long)width; // Set Right Value To Requested Width
windowRect.top=(long)0; // Set Top Value To 0
windowRect.bottom=(long)height; // Set Bottom Value To Requested Height
// fill out the window class structure
windowClass.cbSize = sizeof(WNDCLASSEX);
windowClass.style = CS_HREDRAW | CS_VREDRAW;
windowClass.lpfnWndProc = WndProc;
windowClass.cbClsExtra = 0;
windowClass.cbWndExtra = 0;
windowClass.hInstance = hInstance;
windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION); // default icon
windowClass.hCursor = LoadCursor(NULL, IDC_ARROW); // default arrow
windowClass.hbrBackground = NULL; // don't need background
windowClass.lpszMenuName = NULL; // no menu
windowClass.lpszClassName = "MyClass";
windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // windows logo small icon
// register the windows class
if (!RegisterClassEx(&windowClass))
return 0;
if (fullScreen) // fullscreen?
{
DEVMODE dmScreenSettings; // device mode
memset(&dmScreenSettings,0,sizeof(dmScreenSettings));
dmScreenSettings.dmSize = sizeof(dmScreenSettings);
dmScreenSettings.dmPelsWidth = width; // screen width
dmScreenSettings.dmPelsHeight = height; // screen height
dmScreenSettings.dmBitsPerPel = bits; // bits per pixel
dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;
//
if (ChangeDisplaySettings(&dmScreenSettings, CDS_FULLSCREEN) != DISP_CHANGE_SUCCESSFUL)
{
// setting display mode failed, switch to windowed
MessageBox(NULL, "Display mode failed", NULL, MB_OK);
fullScreen=FALSE;
}
}
if (fullScreen) // Are We Still In Fullscreen Mode?
{
dwExStyle=WS_EX_APPWINDOW; // Window Extended Style
dwStyle=WS_POPUP; // Windows Style
ShowCursor(FALSE); // Hide Mouse Pointer
}
else
{
dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; // Window Extended Style
dwStyle=WS_OVERLAPPEDWINDOW; // Windows Style
}
AdjustWindowRectEx(&windowRect, dwStyle, FALSE, dwExStyle); // Adjust Window To True Requested Size
// class registered, so now create our window
hwnd = CreateWindowEx(NULL, // extended style
"MyClass", // class name
"Lighting Example 3: Moving and Rotating Light", // app name
dwStyle | WS_CLIPCHILDREN |
WS_CLIPSIBLINGS,
0, 0, // x,y coordinate
windowRect.right - windowRect.left,
windowRect.bottom - windowRect.top, // width, height
NULL, // handle to parent
NULL, // handle to menu
hInstance, // application instance
NULL); // no extra params
// check if window creation failed (hwnd would equal NULL)
if (!hwnd)
return 0;
ShowWindow(hwnd, SW_SHOW); // display the window
UpdateWindow(hwnd); // update the window
done = false; // intialize the loop condition variable
Initialize(); // initialize OpenGL
// main message loop
while (!done)
{
PeekMessage(&msg, hwnd, NULL, NULL, PM_REMOVE);
if (msg.message == WM_QUIT) // do we receive a WM_QUIT message?
{
done = true; // if so, time to quit the application
}
else
{
if (keyPressed[VK_ESCAPE])
done = true;
else
{
if (keyPressed['R'])
currentColor = 1;
if (keyPressed['G'])
currentColor = 2;
if (keyPressed['B'])
currentColor = 3;
if ((keyPressed['S']) && (spotEnabled))
{
spotEnabled = false;
glDisable(GL_LIGHT0);
}
else if ((keyPressed['S']) && (!spotEnabled))
{
spotEnabled = true;
glEnable(GL_LIGHT0);
}
Render();
TranslateMessage(&msg); // translate and dispatch to event queue
DispatchMessage(&msg);
}
}
}
if (fullScreen)
{
ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop
ShowCursor(TRUE); // Show Mouse Pointer
}
return msg.wParam;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -