📄 mk_fhmm.m
字号:
function bnet = mk_fhmm(N, Q, Y, discrete_obs)% MK_FHMM Make a factorial Hidden Markov Model%% There are N independent parallel hidden chains, each connected to the output%% e.g., N = 2 (vertical/diagonal edges point down)%% A1--->A2% | B1--|->B2% | / |/% Y1 Y2%% [bnet, onode] = mk_chmm(n, q, y, discrete_obs)%% Each hidden node is discrete and has Q values.% If discrete_obs = 1, each observed node is discrete and has values 1..Y.% If discrete_obs = 0, each observed node is a Gaussian vector of length Y.if nargin < 2, Q = 2; endif nargin < 3, Y = 2; endif nargin < 4, discrete_obs = 1; endss = N+1;hnodes = 1:N;onode = N+1;intra = zeros(ss);intra(hnodes, onode) = 1;inter = eye(ss);inter(onode,onode) = 0;ns = [Q*ones(1,N) Y];eclass1 = [hnodes onode];eclass2 = [hnodes+ss onode];if discrete_obs dnodes = 1:ss;else dnodes = hnodes;endbnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onode);for i=hnodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i);endi = onode;if discrete_obs bnet.CPD{i} = tabular_CPD(bnet, i);else bnet.CPD{i} = gaussian_CPD(bnet, i);endfor i=hnodes(:)'+ss bnet.CPD{i} = tabular_CPD(bnet, i);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -