📄 dqed_prb.out.txt
字号:
Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -7.75000E-01 -4.70000E-02 5 - 8 -3.90487E+00 -1.40981E+00 -1.34295E+01 -9.84066E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -3.00000E-02 -4.10000E-02 5 - 8 9.20720E-02 2.55570E-01 -6.51973E-02 -1.08744E+00(' = Variable number') 1 - 1 7 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -3.00000E-02 -4.10000E-02 5 - 8 9.20720E-02 2.55570E-01 -6.51973E-02 -1.08744E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 4.70000E-02 -7.75000E-01 5 - 8 1.40981E+00 -3.90487E+00 9.84066E+00 -1.34295E+01(' = Variable number') 1 - 1 8 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 4.70000E-02 -7.75000E-01 5 - 8 1.40981E+00 -3.90487E+00 9.84066E+00 -1.34295E+01 TEST01 Use an analytic jacobian. MODE = 0 Computed minimizing X: 0.309987E-02 -0.819100 -0.223941E-03 -0.167761E-01 2.68151 2.25022 -20.2417 0.797098 Residual after the fit = 0.162268E-12QED output flag IGO = 2 TEST01 Use an analytic jacobian. MODE = 1 Computed minimizing X: -0.150826 -0.665174 0.393590E-01 -0.563590E-01 -2.22200 2.67205 -2.83882 -0.827104 Residual after the fit = 4.46141 QED output flag IGO = 8 TEST02 Use an approximate jacobian. MODE = 0 Computed minimizing X: 0.309987E-02 -0.819100 -0.223941E-03 -0.167761E-01 2.68151 2.25022 -20.2417 0.797098 Residual after the fit = 0.129124E-06QED output flag IGO = 7 TEST02 Use an approximate jacobian. MODE = 1 Computed minimizing X: -0.486099E-01 -0.767390 0.859667E-01 -0.102967 -2.22226 2.42412 -4.89265 -0.385246 Residual after the fit = 8.11642 QED output flag IGO = 8 Example 791226 Input SIGMA: 1 -0.690000 2 -0.440000E-01 3 -1.57000 4 -1.31000 5 -2.65000 6 2.00000 7 -12.6000 8 9.48000 Input X: 1 -0.300000 2 -0.390000 3 0.300000 4 -0.344000 5 -1.20000 6 2.69000 7 1.59000 8 -1.50000 Test the partial derivative computation: DPCHEK: Compare user jacobian and function for consistency, using finite differences. Evaluation point X 1 - 4 -3.00000E-01 -3.90000E-01 3.00000E-01 -3.44000E-01 5 - 8 -1.20000E+00 2.69000E+00 1.59000E+00 -1.50000E+00 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 -1.20000E+00 1.59000E+00 5 - 8 -1.08810E+00 -3.81600E+00 7.37316E+00 2.84912E+00(' = Variable number') 1 - 1 1 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 -1.20000E+00 1.59000E+00 5 - 8 -1.08810E+00 -3.81600E+00 7.37316E+00 2.84912E+00 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 2.69000E+00 -1.50000E+00 5 - 8 4.98610E+00 -8.07000E+00 1.30761E+00 -2.91874E+01(' = Variable number') 1 - 1 2 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 2.69000E+00 -1.50000E+00 5 - 8 4.98610E+00 -8.07000E+00 1.30761E+00 -2.91874E+01 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 -1.59000E+00 -1.20000E+00 5 - 8 3.81600E+00 -1.08810E+00 -2.84912E+00 7.37316E+00(' = Variable number') 1 - 1 3 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 -1.59000E+00 -1.20000E+00 5 - 8 3.81600E+00 -1.08810E+00 -2.84912E+00 7.37316E+00 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 1.50000E+00 2.69000E+00 5 - 8 8.07000E+00 4.98610E+00 2.91875E+01 1.30761E+00(' = Variable number') 1 - 1 4 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 1.50000E+00 2.69000E+00 5 - 8 8.07000E+00 4.98610E+00 2.91874E+01 1.30761E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -3.00000E-01 3.00000E-01 5 - 8 -2.34000E-01 -1.67400E+00 4.41369E+00 2.45511E+00(' = Variable number') 1 - 1 5 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -3.00000E-01 3.00000E-01 5 - 8 -2.34000E-01 -1.67400E+00 4.41369E+00 2.45511E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -3.90000E-01 -3.44000E-01 5 - 8 -3.13020E+00 -6.80720E-01 -1.41620E+01 4.29624E+00(' = Variable number') 1 - 1 6 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -3.90000E-01 -3.44000E-01 5 - 8 -3.13020E+00 -6.80720E-01 -1.41620E+01 4.29624E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -3.00000E-01 -3.00000E-01 5 - 8 1.67400E+00 -2.34000E-01 -2.45511E+00 4.41369E+00(' = Variable number') 1 - 1 7 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -3.00000E-01 -3.00000E-01 5 - 8 1.67400E+00 -2.34000E-01 -2.45511E+00 4.41369E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 3.44000E-01 -3.90000E-01 5 - 8 6.80720E-01 -3.13020E+00 -4.29624E+00 -1.41620E+01(' = Variable number') 1 - 1 8 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 3.44000E-01 -3.90000E-01 5 - 8 6.80720E-01 -3.13020E+00 -4.29624E+00 -1.41620E+01 TEST01 Use an analytic jacobian. MODE = 0 Computed minimizing X: -0.311627 -0.378373 0.328244 -0.372244 -1.28223 2.49430 1.55487 -1.38464 Residual after the fit = 0.339733E-07QED output flag IGO = 6 TEST01 Use an analytic jacobian. MODE = 1 Computed minimizing X: -0.320053 -0.369947 0.289850 -0.333850 -1.38036 2.64485 1.33695 -1.43901 Residual after the fit = 0.900241 QED output flag IGO = 8 TEST02 Use an approximate jacobian. MODE = 0 Computed minimizing X: -0.311627 -0.378373 0.328244 -0.372244 -1.28223 2.49430 1.55487 -1.38464 Residual after the fit = 0.339778E-07QED output flag IGO = 6 TEST02 Use an approximate jacobian. MODE = 1 Computed minimizing X: -0.314073 -0.375927 0.289851 -0.333851 -1.37328 2.65216 1.56368 -1.44586 Residual after the fit = 1.48589 QED output flag IGO = 8 Example 791129 Input SIGMA: 1 0.485000 2 -0.190000E-02 3 -0.581000E-01 4 0.150000E-01 5 0.105000 6 0.406000E-01 7 0.167000 8 -0.399000 Input X: 1 0.299000 2 0.186000 3 -0.273000E-01 4 0.254000E-01 5 -0.474000 6 0.474000 7 -0.892000E-01 8 0.892000E-01 Test the partial derivative computation: DPCHEK: Compare user jacobian and function for consistency, using finite differences. Evaluation point X 1 - 4 2.99000E-01 1.86000E-01 -2.73000E-02 2.54000E-02 5 - 8 -4.74000E-01 4.74000E-01 -8.92000E-02 8.92000E-02 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 -4.74000E-01 -8.92000E-02 5 - 8 2.16719E-01 8.45616E-02 -9.51821E-02 -5.94136E-02(' = Variable number') 1 - 1 1 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 -4.74000E-01 -8.92000E-02 5 - 8 2.16719E-01 8.45616E-02 -9.51821E-02 -5.94136E-02 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 4.74000E-01 8.92000E-02 5 - 8 2.16719E-01 8.45616E-02 9.51821E-02 5.94136E-02(' = Variable number') 1 - 1 2 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 4.74000E-01 8.92000E-02 5 - 8 2.16719E-01 8.45616E-02 9.51821E-02 5.94136E-02 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 8.92000E-02 -4.74000E-01 5 - 8 -8.45616E-02 2.16719E-01 5.94136E-02 -9.51821E-02(' = Variable number') 1 - 1 3 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 8.92000E-02 -4.74000E-01 5 - 8 -8.45616E-02 2.16719E-01 5.94136E-02 -9.51821E-02 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 -8.92000E-02 4.74000E-01 5 - 8 -8.45616E-02 2.16719E-01 -5.94136E-02 9.51821E-02(' = Variable number') 1 - 1 4 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 -8.92000E-02 4.74000E-01 5 - 8 -8.45616E-02 2.16719E-01 -5.94136E-02 9.51821E-02 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 2.99000E-01 -2.73000E-02 5 - 8 -2.88322E-01 -2.74612E-02 2.01323E-01 5.81024E-02(' = Variable number') 1 - 1 5 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 2.99000E-01 -2.73000E-02 5 - 8 -2.88322E-01 -2.74612E-02 2.01323E-01 5.81024E-02 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 1.86000E-01 2.54000E-02 5 - 8 1.71797E-01 5.72616E-02 1.14486E-01 6.36994E-02(' = Variable number') 1 - 1 6 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 1.86000E-01 2.54000E-02 5 - 8 1.71797E-01 5.72616E-02 1.14486E-01 6.36994E-02 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 2.73000E-02 2.99000E-01 5 - 8 2.74612E-02 -2.88322E-01 -5.81024E-02 2.01323E-01(' = Variable number') 1 - 1 7 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 2.73000E-02 2.99000E-01 5 - 8 2.74612E-02 -2.88322E-01 -5.81024E-02 2.01323E-01 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -2.54000E-02 1.86000E-01 5 - 8 -5.72616E-02 1.71797E-01 -6.36994E-02 1.14486E-01(' = Variable number') 1 - 1 8 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -2.54000E-02 1.86000E-01 5 - 8 -5.72616E-02 1.71797E-01 -6.36994E-02 1.14486E-01 TEST01 Use an analytic jacobian. MODE = 0 Computed minimizing X: 0.491321 -0.632135E-02 0.981564E-04 -0.199816E-02 -0.100315 0.122657 -0.207179E-01 -4.02352 Residual after the fit = 0.157406E-07QED output flag IGO = 7 TEST01 Use an analytic jacobian. MODE = 1 Computed minimizing X: 0.305799 0.179201 -0.266793E-01 0.247793E-01 -0.517111 0.452445 -0.973129E-01 0.851436E-01Residual after the fit = 0.436076 QED output flag IGO = 8 TEST02 Use an approximate jacobian. MODE = 0 Computed minimizing X: 0.491321 -0.632135E-02 0.981564E-04 -0.199816E-02 -0.100315 0.122657 -0.207179E-01 -4.02352 Residual after the fit = 0.501808E-09QED output flag IGO = 2 TEST02 Use an approximate jacobian. MODE = 1 Computed minimizing X: 0.305799 0.179201 -0.266786E-01 0.247786E-01 -0.653604 0.212513 -0.187600 0.730313E-01 Residual after the fit = 0.428311 QED output flag IGO = 8 DQED_PRB Normal end of execution.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -