⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dqed_prb.out.txt

📁 求解非线性方程组的一个高效算法
💻 TXT
📖 第 1 页 / 共 2 页
字号:
 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -7.75000E-01  -4.70000E-02    5 -    8   -3.90487E+00  -1.40981E+00  -1.34295E+01  -9.84066E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -3.00000E-02  -4.10000E-02    5 -    8    9.20720E-02   2.55570E-01  -6.51973E-02  -1.08744E+00(' = Variable number')    1 -    1     7 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -3.00000E-02  -4.10000E-02    5 -    8    9.20720E-02   2.55570E-01  -6.51973E-02  -1.08744E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00   4.70000E-02  -7.75000E-01    5 -    8    1.40981E+00  -3.90487E+00   9.84066E+00  -1.34295E+01(' = Variable number')    1 -    1     8 Analytic partial    1 -    4    0.00000E+00   0.00000E+00   4.70000E-02  -7.75000E-01    5 -    8    1.40981E+00  -3.90487E+00   9.84066E+00  -1.34295E+01 TEST01  Use an analytic jacobian.  MODE =      0 Computed minimizing X:   0.309987E-02 -0.819100     -0.223941E-03 -0.167761E-01   2.68151       2.25022      -20.2417      0.797098    Residual after the fit =   0.162268E-12QED output flag IGO =      2 TEST01  Use an analytic jacobian.  MODE =      1 Computed minimizing X:  -0.150826     -0.665174      0.393590E-01 -0.563590E-01  -2.22200       2.67205      -2.83882     -0.827104    Residual after the fit =    4.46141    QED output flag IGO =      8 TEST02  Use an approximate jacobian.  MODE =      0 Computed minimizing X:   0.309987E-02 -0.819100     -0.223941E-03 -0.167761E-01   2.68151       2.25022      -20.2417      0.797098     Residual after the fit =   0.129124E-06QED output flag IGO =      7 TEST02  Use an approximate jacobian.  MODE =      1 Computed minimizing X:  -0.486099E-01 -0.767390      0.859667E-01 -0.102967      -2.22226       2.42412      -4.89265     -0.385246     Residual after the fit =    8.11642    QED output flag IGO =      8 Example 791226 Input SIGMA:      1 -0.690000         2 -0.440000E-01     3  -1.57000         4  -1.31000         5  -2.65000         6   2.00000         7  -12.6000         8   9.48000     Input X:      1 -0.300000         2 -0.390000         3  0.300000         4 -0.344000         5  -1.20000         6   2.69000         7   1.59000         8  -1.50000     Test the partial derivative computation:    DPCHEK:   Compare user jacobian and function for   consistency, using finite differences.   Evaluation point X    1 -    4   -3.00000E-01  -3.90000E-01   3.00000E-01  -3.44000E-01    5 -    8   -1.20000E+00   2.69000E+00   1.59000E+00  -1.50000E+00 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00  -1.20000E+00   1.59000E+00    5 -    8   -1.08810E+00  -3.81600E+00   7.37316E+00   2.84912E+00(' = Variable number')    1 -    1     1 Analytic partial    1 -    4    1.00000E+00   0.00000E+00  -1.20000E+00   1.59000E+00    5 -    8   -1.08810E+00  -3.81600E+00   7.37316E+00   2.84912E+00 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00   2.69000E+00  -1.50000E+00    5 -    8    4.98610E+00  -8.07000E+00   1.30761E+00  -2.91874E+01(' = Variable number')    1 -    1     2 Analytic partial    1 -    4    1.00000E+00   0.00000E+00   2.69000E+00  -1.50000E+00    5 -    8    4.98610E+00  -8.07000E+00   1.30761E+00  -2.91874E+01 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00  -1.59000E+00  -1.20000E+00    5 -    8    3.81600E+00  -1.08810E+00  -2.84912E+00   7.37316E+00(' = Variable number')    1 -    1     3 Analytic partial    1 -    4    0.00000E+00   1.00000E+00  -1.59000E+00  -1.20000E+00    5 -    8    3.81600E+00  -1.08810E+00  -2.84912E+00   7.37316E+00 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00   1.50000E+00   2.69000E+00    5 -    8    8.07000E+00   4.98610E+00   2.91875E+01   1.30761E+00(' = Variable number')    1 -    1     4 Analytic partial    1 -    4    0.00000E+00   1.00000E+00   1.50000E+00   2.69000E+00    5 -    8    8.07000E+00   4.98610E+00   2.91874E+01   1.30761E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -3.00000E-01   3.00000E-01    5 -    8   -2.34000E-01  -1.67400E+00   4.41369E+00   2.45511E+00(' = Variable number')    1 -    1     5 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -3.00000E-01   3.00000E-01    5 -    8   -2.34000E-01  -1.67400E+00   4.41369E+00   2.45511E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -3.90000E-01  -3.44000E-01    5 -    8   -3.13020E+00  -6.80720E-01  -1.41620E+01   4.29624E+00(' = Variable number')    1 -    1     6 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -3.90000E-01  -3.44000E-01    5 -    8   -3.13020E+00  -6.80720E-01  -1.41620E+01   4.29624E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -3.00000E-01  -3.00000E-01    5 -    8    1.67400E+00  -2.34000E-01  -2.45511E+00   4.41369E+00(' = Variable number')    1 -    1     7 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -3.00000E-01  -3.00000E-01    5 -    8    1.67400E+00  -2.34000E-01  -2.45511E+00   4.41369E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00   3.44000E-01  -3.90000E-01    5 -    8    6.80720E-01  -3.13020E+00  -4.29624E+00  -1.41620E+01(' = Variable number')    1 -    1     8 Analytic partial    1 -    4    0.00000E+00   0.00000E+00   3.44000E-01  -3.90000E-01    5 -    8    6.80720E-01  -3.13020E+00  -4.29624E+00  -1.41620E+01 TEST01  Use an analytic jacobian.  MODE =      0 Computed minimizing X:  -0.311627     -0.378373      0.328244     -0.372244      -1.28223       2.49430       1.55487      -1.38464    Residual after the fit =   0.339733E-07QED output flag IGO =      6 TEST01  Use an analytic jacobian.  MODE =      1 Computed minimizing X:  -0.320053     -0.369947      0.289850     -0.333850      -1.38036       2.64485       1.33695      -1.43901    Residual after the fit =   0.900241    QED output flag IGO =      8 TEST02  Use an approximate jacobian.  MODE =      0 Computed minimizing X:  -0.311627     -0.378373      0.328244     -0.372244      -1.28223       2.49430       1.55487      -1.38464     Residual after the fit =   0.339778E-07QED output flag IGO =      6 TEST02  Use an approximate jacobian.  MODE =      1 Computed minimizing X:  -0.314073     -0.375927      0.289851     -0.333851      -1.37328       2.65216       1.56368      -1.44586     Residual after the fit =    1.48589    QED output flag IGO =      8 Example 791129 Input SIGMA:      1  0.485000         2 -0.190000E-02     3 -0.581000E-01     4  0.150000E-01     5  0.105000         6  0.406000E-01     7  0.167000         8 -0.399000     Input X:      1  0.299000         2  0.186000         3 -0.273000E-01     4  0.254000E-01     5 -0.474000         6  0.474000         7 -0.892000E-01     8  0.892000E-01 Test the partial derivative computation:    DPCHEK:   Compare user jacobian and function for   consistency, using finite differences.   Evaluation point X    1 -    4    2.99000E-01   1.86000E-01  -2.73000E-02   2.54000E-02    5 -    8   -4.74000E-01   4.74000E-01  -8.92000E-02   8.92000E-02 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00  -4.74000E-01  -8.92000E-02    5 -    8    2.16719E-01   8.45616E-02  -9.51821E-02  -5.94136E-02(' = Variable number')    1 -    1     1 Analytic partial    1 -    4    1.00000E+00   0.00000E+00  -4.74000E-01  -8.92000E-02    5 -    8    2.16719E-01   8.45616E-02  -9.51821E-02  -5.94136E-02 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00   4.74000E-01   8.92000E-02    5 -    8    2.16719E-01   8.45616E-02   9.51821E-02   5.94136E-02(' = Variable number')    1 -    1     2 Analytic partial    1 -    4    1.00000E+00   0.00000E+00   4.74000E-01   8.92000E-02    5 -    8    2.16719E-01   8.45616E-02   9.51821E-02   5.94136E-02 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00   8.92000E-02  -4.74000E-01    5 -    8   -8.45616E-02   2.16719E-01   5.94136E-02  -9.51821E-02(' = Variable number')    1 -    1     3 Analytic partial    1 -    4    0.00000E+00   1.00000E+00   8.92000E-02  -4.74000E-01    5 -    8   -8.45616E-02   2.16719E-01   5.94136E-02  -9.51821E-02 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00  -8.92000E-02   4.74000E-01    5 -    8   -8.45616E-02   2.16719E-01  -5.94136E-02   9.51821E-02(' = Variable number')    1 -    1     4 Analytic partial    1 -    4    0.00000E+00   1.00000E+00  -8.92000E-02   4.74000E-01    5 -    8   -8.45616E-02   2.16719E-01  -5.94136E-02   9.51821E-02 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00   2.99000E-01  -2.73000E-02    5 -    8   -2.88322E-01  -2.74612E-02   2.01323E-01   5.81024E-02(' = Variable number')    1 -    1     5 Analytic partial    1 -    4    0.00000E+00   0.00000E+00   2.99000E-01  -2.73000E-02    5 -    8   -2.88322E-01  -2.74612E-02   2.01323E-01   5.81024E-02 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00   1.86000E-01   2.54000E-02    5 -    8    1.71797E-01   5.72616E-02   1.14486E-01   6.36994E-02(' = Variable number')    1 -    1     6 Analytic partial    1 -    4    0.00000E+00   0.00000E+00   1.86000E-01   2.54000E-02    5 -    8    1.71797E-01   5.72616E-02   1.14486E-01   6.36994E-02 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00   2.73000E-02   2.99000E-01    5 -    8    2.74612E-02  -2.88322E-01  -5.81024E-02   2.01323E-01(' = Variable number')    1 -    1     7 Analytic partial    1 -    4    0.00000E+00   0.00000E+00   2.73000E-02   2.99000E-01    5 -    8    2.74612E-02  -2.88322E-01  -5.81024E-02   2.01323E-01 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -2.54000E-02   1.86000E-01    5 -    8   -5.72616E-02   1.71797E-01  -6.36994E-02   1.14486E-01(' = Variable number')    1 -    1     8 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -2.54000E-02   1.86000E-01    5 -    8   -5.72616E-02   1.71797E-01  -6.36994E-02   1.14486E-01 TEST01  Use an analytic jacobian.  MODE =      0 Computed minimizing X:   0.491321     -0.632135E-02  0.981564E-04 -0.199816E-02 -0.100315      0.122657     -0.207179E-01  -4.02352    Residual after the fit =   0.157406E-07QED output flag IGO =      7 TEST01  Use an analytic jacobian.  MODE =      1 Computed minimizing X:   0.305799      0.179201     -0.266793E-01  0.247793E-01 -0.517111      0.452445     -0.973129E-01  0.851436E-01Residual after the fit =   0.436076    QED output flag IGO =      8 TEST02  Use an approximate jacobian.  MODE =      0 Computed minimizing X:   0.491321     -0.632135E-02  0.981564E-04 -0.199816E-02 -0.100315      0.122657     -0.207179E-01  -4.02352     Residual after the fit =   0.501808E-09QED output flag IGO =      2 TEST02  Use an approximate jacobian.  MODE =      1 Computed minimizing X:   0.305799      0.179201     -0.266786E-01  0.247786E-01 -0.653604      0.212513     -0.187600      0.730313E-01 Residual after the fit =   0.428311    QED output flag IGO =      8 DQED_PRB  Normal end of execution.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -