📄 dqed_prb.out.txt
字号:
June 24 2002 10:54:43.768 AM DQED_PRB A set of tests for DQED, which can solve bounded and constrained linear least squares problems and systems of nonlinear equations. Example 0121C Input SIGMA: 1 -0.807000 2 -0.210000E-01 3 -2.37900 4 -3.64000 5 -10.5410 6 -1.96100 7 -51.5510 8 21.0530 Input X: 1 -0.740000E-01 2 -0.733000 3 0.130000E-01 4 -0.340000E-01 5 -3.63200 6 3.63200 7 -0.289000 8 0.289000 Test the partial derivative computation: DPCHEK: Compare user jacobian and function for consistency, using finite differences. Evaluation point X 1 - 4 -7.40000E-02 -7.33000E-01 1.30000E-02 -3.40000E-02 5 - 8 -3.63200E+00 3.63200E+00 -2.89000E-01 2.89000E-01 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 -3.63200E+00 -2.89000E-01 5 - 8 1.31079E+01 2.09930E+00 -4.70012E+01 -1.14128E+01(' = Variable number') 1 - 1 1 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 -3.63200E+00 -2.89000E-01 5 - 8 1.31079E+01 2.09930E+00 -4.70012E+01 -1.14128E+01 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 3.63200E+00 2.89000E-01 5 - 8 1.31079E+01 2.09930E+00 4.70012E+01 1.14128E+01(' = Variable number') 1 - 1 2 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 3.63200E+00 2.89000E-01 5 - 8 1.31079E+01 2.09930E+00 4.70012E+01 1.14128E+01 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 2.89000E-01 -3.63200E+00 5 - 8 -2.09930E+00 1.31079E+01 1.14128E+01 -4.70012E+01(' = Variable number') 1 - 1 3 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 2.89000E-01 -3.63200E+00 5 - 8 -2.09930E+00 1.31079E+01 1.14128E+01 -4.70012E+01 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 -2.89000E-01 3.63200E+00 5 - 8 -2.09930E+00 1.31079E+01 -1.14128E+01 4.70012E+01(' = Variable number') 1 - 1 4 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 -2.89000E-01 3.63200E+00 5 - 8 -2.09930E+00 1.31079E+01 -1.14128E+01 4.70012E+01 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -7.40000E-02 1.30000E-02 5 - 8 5.45050E-01 -5.16600E-02 -2.99183E+00 4.51645E-02(' = Variable number') 1 - 1 5 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -7.40000E-02 1.30000E-02 5 - 8 5.45050E-01 -5.16600E-02 -2.99183E+00 4.51645E-02 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -7.33000E-01 -3.40000E-02 5 - 8 -5.30486E+00 -6.70650E-01 -2.86102E+01 -5.95336E+00(' = Variable number') 1 - 1 6 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -7.33000E-01 -3.40000E-02 5 - 8 -5.30486E+00 -6.70650E-01 -2.86102E+01 -5.95336E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -1.30000E-02 -7.40000E-02 5 - 8 5.16600E-02 5.45050E-01 -4.51644E-02 -2.99183E+00(' = Variable number') 1 - 1 7 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -1.30000E-02 -7.40000E-02 5 - 8 5.16600E-02 5.45050E-01 -4.51645E-02 -2.99183E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 3.40000E-02 -7.33000E-01 5 - 8 6.70650E-01 -5.30486E+00 5.95336E+00 -2.86102E+01(' = Variable number') 1 - 1 8 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 3.40000E-02 -7.33000E-01 5 - 8 6.70650E-01 -5.30486E+00 5.95336E+00 -2.86102E+01 TEST01 Use an analytic jacobian. MODE = 0 Computed minimizing X: -0.692099 -0.114901 0.710964 -0.731964 -0.815740 3.42660 1.18472 -2.33285 Residual after the fit = 0.117140E-05QED output flag IGO = 7 TEST01 Use an analytic jacobian. MODE = 1 Computed minimizing X: -0.205213E-02 -0.804948 0.109028E-02 -0.220903E-01 2.62744 3.99393 1.39004 -0.455897 Residual after the fit = 8.32802 QED output flag IGO = 8 TEST02 Use an approximate jacobian. MODE = 0 Computed minimizing X: -0.692099 -0.114901 0.710964 -0.731964 -0.815740 3.42660 1.18472 -2.33285 Residual after the fit = 0.754792E-06QED output flag IGO = 7 TEST02 Use an approximate jacobian. MODE = 1 Computed minimizing X: -0.205253E-02 -0.804947 0.109024E-02 -0.220902E-01 0.117384 4.04992 1.24784 -0.496137 Residual after the fit = 7.39432 QED output flag IGO = 8 Example 0121B Input SIGMA: 1 -0.809000 2 -0.210000E-01 3 -2.04000 4 -0.614000 5 -6.90300 6 -2.93400 7 -26.3280 8 18.6390 Input X: 1 -0.560000E-01 2 -0.753000 3 0.260000E-01 4 -0.470000E-01 5 -2.99100 6 2.99100 7 -0.568000 8 0.568000 Test the partial derivative computation: DPCHEK: Compare user jacobian and function for consistency, using finite differences. Evaluation point X 1 - 4 -5.60000E-02 -7.53000E-01 2.60000E-02 -4.70000E-02 5 - 8 -2.99100E+00 2.99100E+00 -5.68000E-01 5.68000E-01 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 -2.99100E+00 -5.68000E-01 5 - 8 8.62346E+00 3.39778E+00 -2.38628E+01 -1.50609E+01(' = Variable number') 1 - 1 1 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 -2.99100E+00 -5.68000E-01 5 - 8 8.62346E+00 3.39778E+00 -2.38628E+01 -1.50609E+01 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 2.99100E+00 5.68000E-01 5 - 8 8.62346E+00 3.39778E+00 2.38628E+01 1.50609E+01(' = Variable number') 1 - 1 2 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 2.99100E+00 5.68000E-01 5 - 8 8.62346E+00 3.39778E+00 2.38628E+01 1.50609E+01 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 5.68000E-01 -2.99100E+00 5 - 8 -3.39778E+00 8.62346E+00 1.50609E+01 -2.38628E+01(' = Variable number') 1 - 1 3 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 5.68000E-01 -2.99100E+00 5 - 8 -3.39778E+00 8.62346E+00 1.50609E+01 -2.38628E+01 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 -5.68000E-01 2.99100E+00 5 - 8 -3.39778E+00 8.62346E+00 -1.50609E+01 2.38628E+01(' = Variable number') 1 - 1 4 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 -5.68000E-01 2.99100E+00 5 - 8 -3.39778E+00 8.62346E+00 -1.50609E+01 2.38628E+01 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -5.60000E-02 2.60000E-02 5 - 8 3.64528E-01 -9.19160E-02 -1.71377E+00 1.01803E-01(' = Variable number') 1 - 1 5 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -5.60000E-02 2.60000E-02 5 - 8 3.64528E-01 -9.19160E-02 -1.71377E+00 1.01803E-01 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -7.53000E-01 -4.70000E-02 5 - 8 -4.45105E+00 -1.13656E+00 -1.90013E+01 -8.89148E+00(' = Variable number') 1 - 1 6 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -7.53000E-01 -4.70000E-02 5 - 8 -4.45105E+00 -1.13656E+00 -1.90013E+01 -8.89148E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -2.60000E-02 -5.60000E-02 5 - 8 9.19160E-02 3.64528E-01 -1.01803E-01 -1.71377E+00(' = Variable number') 1 - 1 7 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -2.60000E-02 -5.60000E-02 5 - 8 9.19160E-02 3.64528E-01 -1.01803E-01 -1.71377E+00 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 4.70000E-02 -7.53000E-01 5 - 8 1.13656E+00 -4.45105E+00 8.89148E+00 -1.90013E+01(' = Variable number') 1 - 1 8 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 4.70000E-02 -7.53000E-01 5 - 8 1.13656E+00 -4.45105E+00 8.89148E+00 -1.90013E+01 TEST01 Use an analytic jacobian. MODE = 0 Computed minimizing X: 0.903454E-02 -0.818035 -0.445074E-03 -0.205549E-01 2.77343 2.52948 -14.8010 0.522047 Residual after the fit = 0.249114E-08QED output flag IGO = 2 TEST01 Use an analytic jacobian. MODE = 1 Computed minimizing X: -0.168953 -0.640047 0.249617 -0.270617 -0.804537 2.68682 -5.23723 -0.848855 Residual after the fit = 3.10566 QED output flag IGO = 8 TEST02 Use an approximate jacobian. MODE = 0 Computed minimizing X: 0.903454E-02 -0.818035 -0.445074E-03 -0.205549E-01 2.77343 2.52948 -14.8010 0.522047 Residual after the fit = 0.121503E-12QED output flag IGO = 2 TEST02 Use an approximate jacobian. MODE = 1 Computed minimizing X: -0.249923 -0.559077 0.157449 -0.178449 -2.23373 3.22729 -2.80271 -0.686177 Residual after the fit = 1.84884 QED output flag IGO = 8 Example 0121A Input SIGMA: 1 -0.816000 2 -0.170000E-01 3 -1.82600 4 -0.754000 5 -4.83900 6 -3.25900 7 -14.0230 8 15.4670 Input X: 1 -0.410000E-01 2 -0.775000 3 0.300000E-01 4 -0.470000E-01 5 -2.56500 6 2.56500 7 -0.754000 8 0.754000 Test the partial derivative computation: DPCHEK: Compare user jacobian and function for consistency, using finite differences. Evaluation point X 1 - 4 -4.10000E-02 -7.75000E-01 3.00000E-02 -4.70000E-02 5 - 8 -2.56500E+00 2.56500E+00 -7.54000E-01 7.54000E-01 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 -2.56500E+00 -7.54000E-01 5 - 8 6.01071E+00 3.86802E+00 -1.25010E+01 -1.44535E+01(' = Variable number') 1 - 1 1 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 -2.56500E+00 -7.54000E-01 5 - 8 6.01071E+00 3.86802E+00 -1.25010E+01 -1.44535E+01 Numerical derivative 1 - 4 1.00000E+00 0.00000E+00 2.56500E+00 7.54000E-01 5 - 8 6.01071E+00 3.86802E+00 1.25010E+01 1.44535E+01(' = Variable number') 1 - 1 2 Analytic partial 1 - 4 1.00000E+00 0.00000E+00 2.56500E+00 7.54000E-01 5 - 8 6.01071E+00 3.86802E+00 1.25010E+01 1.44535E+01 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 7.54000E-01 -2.56500E+00 5 - 8 -3.86802E+00 6.01071E+00 1.44535E+01 -1.25010E+01(' = Variable number') 1 - 1 3 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 7.54000E-01 -2.56500E+00 5 - 8 -3.86802E+00 6.01071E+00 1.44535E+01 -1.25010E+01 Numerical derivative 1 - 4 0.00000E+00 1.00000E+00 -7.54000E-01 2.56500E+00 5 - 8 -3.86802E+00 6.01071E+00 -1.44535E+01 1.25010E+01(' = Variable number') 1 - 1 4 Analytic partial 1 - 4 0.00000E+00 1.00000E+00 -7.54000E-01 2.56500E+00 5 - 8 -3.86802E+00 6.01071E+00 -1.44535E+01 1.25010E+01 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -4.10000E-02 3.00000E-02 5 - 8 2.55570E-01 -9.20720E-02 -1.08744E+00 6.51973E-02(' = Variable number') 1 - 1 5 Analytic partial 1 - 4 0.00000E+00 0.00000E+00 -4.10000E-02 3.00000E-02 5 - 8 2.55570E-01 -9.20720E-02 -1.08744E+00 6.51973E-02 Numerical derivative 1 - 4 0.00000E+00 0.00000E+00 -7.75000E-01 -4.70000E-02 5 - 8 -3.90487E+00 -1.40981E+00 -1.34295E+01 -9.84066E+00(' = Variable number') 1 - 1 6
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -