⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dqed_prb.out.txt

📁 求解非线性方程组的一个高效算法
💻 TXT
📖 第 1 页 / 共 2 页
字号:
June 24 2002  10:54:43.768 AM DQED_PRB  A set of tests for DQED, which can solve  bounded and constrained linear least squares problems  and systems of nonlinear equations. Example 0121C Input SIGMA:      1 -0.807000         2 -0.210000E-01     3  -2.37900         4  -3.64000         5  -10.5410         6  -1.96100         7  -51.5510         8   21.0530     Input X:      1 -0.740000E-01     2 -0.733000         3  0.130000E-01     4 -0.340000E-01     5  -3.63200         6   3.63200         7 -0.289000         8  0.289000     Test the partial derivative computation:    DPCHEK:   Compare user jacobian and function for   consistency, using finite differences.   Evaluation point X    1 -    4   -7.40000E-02  -7.33000E-01   1.30000E-02  -3.40000E-02    5 -    8   -3.63200E+00   3.63200E+00  -2.89000E-01   2.89000E-01 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00  -3.63200E+00  -2.89000E-01    5 -    8    1.31079E+01   2.09930E+00  -4.70012E+01  -1.14128E+01(' = Variable number')    1 -    1     1 Analytic partial    1 -    4    1.00000E+00   0.00000E+00  -3.63200E+00  -2.89000E-01    5 -    8    1.31079E+01   2.09930E+00  -4.70012E+01  -1.14128E+01 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00   3.63200E+00   2.89000E-01    5 -    8    1.31079E+01   2.09930E+00   4.70012E+01   1.14128E+01(' = Variable number')    1 -    1     2 Analytic partial    1 -    4    1.00000E+00   0.00000E+00   3.63200E+00   2.89000E-01    5 -    8    1.31079E+01   2.09930E+00   4.70012E+01   1.14128E+01 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00   2.89000E-01  -3.63200E+00    5 -    8   -2.09930E+00   1.31079E+01   1.14128E+01  -4.70012E+01(' = Variable number')    1 -    1     3 Analytic partial    1 -    4    0.00000E+00   1.00000E+00   2.89000E-01  -3.63200E+00    5 -    8   -2.09930E+00   1.31079E+01   1.14128E+01  -4.70012E+01 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00  -2.89000E-01   3.63200E+00    5 -    8   -2.09930E+00   1.31079E+01  -1.14128E+01   4.70012E+01(' = Variable number')    1 -    1     4 Analytic partial    1 -    4    0.00000E+00   1.00000E+00  -2.89000E-01   3.63200E+00    5 -    8   -2.09930E+00   1.31079E+01  -1.14128E+01   4.70012E+01 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -7.40000E-02   1.30000E-02    5 -    8    5.45050E-01  -5.16600E-02  -2.99183E+00   4.51645E-02(' = Variable number')    1 -    1     5 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -7.40000E-02   1.30000E-02    5 -    8    5.45050E-01  -5.16600E-02  -2.99183E+00   4.51645E-02 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -7.33000E-01  -3.40000E-02    5 -    8   -5.30486E+00  -6.70650E-01  -2.86102E+01  -5.95336E+00(' = Variable number')    1 -    1     6 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -7.33000E-01  -3.40000E-02    5 -    8   -5.30486E+00  -6.70650E-01  -2.86102E+01  -5.95336E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -1.30000E-02  -7.40000E-02    5 -    8    5.16600E-02   5.45050E-01  -4.51644E-02  -2.99183E+00(' = Variable number')    1 -    1     7 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -1.30000E-02  -7.40000E-02    5 -    8    5.16600E-02   5.45050E-01  -4.51645E-02  -2.99183E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00   3.40000E-02  -7.33000E-01    5 -    8    6.70650E-01  -5.30486E+00   5.95336E+00  -2.86102E+01(' = Variable number')    1 -    1     8 Analytic partial    1 -    4    0.00000E+00   0.00000E+00   3.40000E-02  -7.33000E-01    5 -    8    6.70650E-01  -5.30486E+00   5.95336E+00  -2.86102E+01 TEST01  Use an analytic jacobian.  MODE =      0 Computed minimizing X:  -0.692099     -0.114901      0.710964     -0.731964     -0.815740       3.42660       1.18472      -2.33285    Residual after the fit =   0.117140E-05QED output flag IGO =      7 TEST01  Use an analytic jacobian.  MODE =      1 Computed minimizing X:  -0.205213E-02 -0.804948      0.109028E-02 -0.220903E-01   2.62744       3.99393       1.39004     -0.455897    Residual after the fit =    8.32802    QED output flag IGO =      8 TEST02  Use an approximate jacobian.  MODE =      0 Computed minimizing X:  -0.692099     -0.114901      0.710964     -0.731964     -0.815740       3.42660       1.18472      -2.33285     Residual after the fit =   0.754792E-06QED output flag IGO =      7 TEST02  Use an approximate jacobian.  MODE =      1 Computed minimizing X:  -0.205253E-02 -0.804947      0.109024E-02 -0.220902E-01  0.117384       4.04992       1.24784     -0.496137     Residual after the fit =    7.39432    QED output flag IGO =      8 Example 0121B Input SIGMA:      1 -0.809000         2 -0.210000E-01     3  -2.04000         4 -0.614000         5  -6.90300         6  -2.93400         7  -26.3280         8   18.6390     Input X:      1 -0.560000E-01     2 -0.753000         3  0.260000E-01     4 -0.470000E-01     5  -2.99100         6   2.99100         7 -0.568000         8  0.568000     Test the partial derivative computation:    DPCHEK:   Compare user jacobian and function for   consistency, using finite differences.   Evaluation point X    1 -    4   -5.60000E-02  -7.53000E-01   2.60000E-02  -4.70000E-02    5 -    8   -2.99100E+00   2.99100E+00  -5.68000E-01   5.68000E-01 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00  -2.99100E+00  -5.68000E-01    5 -    8    8.62346E+00   3.39778E+00  -2.38628E+01  -1.50609E+01(' = Variable number')    1 -    1     1 Analytic partial    1 -    4    1.00000E+00   0.00000E+00  -2.99100E+00  -5.68000E-01    5 -    8    8.62346E+00   3.39778E+00  -2.38628E+01  -1.50609E+01 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00   2.99100E+00   5.68000E-01    5 -    8    8.62346E+00   3.39778E+00   2.38628E+01   1.50609E+01(' = Variable number')    1 -    1     2 Analytic partial    1 -    4    1.00000E+00   0.00000E+00   2.99100E+00   5.68000E-01    5 -    8    8.62346E+00   3.39778E+00   2.38628E+01   1.50609E+01 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00   5.68000E-01  -2.99100E+00    5 -    8   -3.39778E+00   8.62346E+00   1.50609E+01  -2.38628E+01(' = Variable number')    1 -    1     3 Analytic partial    1 -    4    0.00000E+00   1.00000E+00   5.68000E-01  -2.99100E+00    5 -    8   -3.39778E+00   8.62346E+00   1.50609E+01  -2.38628E+01 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00  -5.68000E-01   2.99100E+00    5 -    8   -3.39778E+00   8.62346E+00  -1.50609E+01   2.38628E+01(' = Variable number')    1 -    1     4 Analytic partial    1 -    4    0.00000E+00   1.00000E+00  -5.68000E-01   2.99100E+00    5 -    8   -3.39778E+00   8.62346E+00  -1.50609E+01   2.38628E+01 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -5.60000E-02   2.60000E-02    5 -    8    3.64528E-01  -9.19160E-02  -1.71377E+00   1.01803E-01(' = Variable number')    1 -    1     5 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -5.60000E-02   2.60000E-02    5 -    8    3.64528E-01  -9.19160E-02  -1.71377E+00   1.01803E-01 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -7.53000E-01  -4.70000E-02    5 -    8   -4.45105E+00  -1.13656E+00  -1.90013E+01  -8.89148E+00(' = Variable number')    1 -    1     6 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -7.53000E-01  -4.70000E-02    5 -    8   -4.45105E+00  -1.13656E+00  -1.90013E+01  -8.89148E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -2.60000E-02  -5.60000E-02    5 -    8    9.19160E-02   3.64528E-01  -1.01803E-01  -1.71377E+00(' = Variable number')    1 -    1     7 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -2.60000E-02  -5.60000E-02    5 -    8    9.19160E-02   3.64528E-01  -1.01803E-01  -1.71377E+00 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00   4.70000E-02  -7.53000E-01    5 -    8    1.13656E+00  -4.45105E+00   8.89148E+00  -1.90013E+01(' = Variable number')    1 -    1     8 Analytic partial    1 -    4    0.00000E+00   0.00000E+00   4.70000E-02  -7.53000E-01    5 -    8    1.13656E+00  -4.45105E+00   8.89148E+00  -1.90013E+01 TEST01  Use an analytic jacobian.  MODE =      0 Computed minimizing X:   0.903454E-02 -0.818035     -0.445074E-03 -0.205549E-01   2.77343       2.52948      -14.8010      0.522047    Residual after the fit =   0.249114E-08QED output flag IGO =      2 TEST01  Use an analytic jacobian.  MODE =      1 Computed minimizing X:  -0.168953     -0.640047      0.249617     -0.270617     -0.804537       2.68682      -5.23723     -0.848855    Residual after the fit =    3.10566    QED output flag IGO =      8 TEST02  Use an approximate jacobian.  MODE =      0 Computed minimizing X:   0.903454E-02 -0.818035     -0.445074E-03 -0.205549E-01   2.77343       2.52948      -14.8010      0.522047     Residual after the fit =   0.121503E-12QED output flag IGO =      2 TEST02  Use an approximate jacobian.  MODE =      1 Computed minimizing X:  -0.249923     -0.559077      0.157449     -0.178449      -2.23373       3.22729      -2.80271     -0.686177     Residual after the fit =    1.84884    QED output flag IGO =      8 Example 0121A Input SIGMA:      1 -0.816000         2 -0.170000E-01     3  -1.82600         4 -0.754000         5  -4.83900         6  -3.25900         7  -14.0230         8   15.4670     Input X:      1 -0.410000E-01     2 -0.775000         3  0.300000E-01     4 -0.470000E-01     5  -2.56500         6   2.56500         7 -0.754000         8  0.754000     Test the partial derivative computation:    DPCHEK:   Compare user jacobian and function for   consistency, using finite differences.   Evaluation point X    1 -    4   -4.10000E-02  -7.75000E-01   3.00000E-02  -4.70000E-02    5 -    8   -2.56500E+00   2.56500E+00  -7.54000E-01   7.54000E-01 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00  -2.56500E+00  -7.54000E-01    5 -    8    6.01071E+00   3.86802E+00  -1.25010E+01  -1.44535E+01(' = Variable number')    1 -    1     1 Analytic partial    1 -    4    1.00000E+00   0.00000E+00  -2.56500E+00  -7.54000E-01    5 -    8    6.01071E+00   3.86802E+00  -1.25010E+01  -1.44535E+01 Numerical derivative    1 -    4    1.00000E+00   0.00000E+00   2.56500E+00   7.54000E-01    5 -    8    6.01071E+00   3.86802E+00   1.25010E+01   1.44535E+01(' = Variable number')    1 -    1     2 Analytic partial    1 -    4    1.00000E+00   0.00000E+00   2.56500E+00   7.54000E-01    5 -    8    6.01071E+00   3.86802E+00   1.25010E+01   1.44535E+01 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00   7.54000E-01  -2.56500E+00    5 -    8   -3.86802E+00   6.01071E+00   1.44535E+01  -1.25010E+01(' = Variable number')    1 -    1     3 Analytic partial    1 -    4    0.00000E+00   1.00000E+00   7.54000E-01  -2.56500E+00    5 -    8   -3.86802E+00   6.01071E+00   1.44535E+01  -1.25010E+01 Numerical derivative    1 -    4    0.00000E+00   1.00000E+00  -7.54000E-01   2.56500E+00    5 -    8   -3.86802E+00   6.01071E+00  -1.44535E+01   1.25010E+01(' = Variable number')    1 -    1     4 Analytic partial    1 -    4    0.00000E+00   1.00000E+00  -7.54000E-01   2.56500E+00    5 -    8   -3.86802E+00   6.01071E+00  -1.44535E+01   1.25010E+01 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -4.10000E-02   3.00000E-02    5 -    8    2.55570E-01  -9.20720E-02  -1.08744E+00   6.51973E-02(' = Variable number')    1 -    1     5 Analytic partial    1 -    4    0.00000E+00   0.00000E+00  -4.10000E-02   3.00000E-02    5 -    8    2.55570E-01  -9.20720E-02  -1.08744E+00   6.51973E-02 Numerical derivative    1 -    4    0.00000E+00   0.00000E+00  -7.75000E-01  -4.70000E-02    5 -    8   -3.90487E+00  -1.40981E+00  -1.34295E+01  -9.84066E+00(' = Variable number')    1 -    1     6

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -