📄 args.c
字号:
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
//------------------------------------------------------------------------------
//
// Copyright (C) 2004-2008, Freescale Semiconductor, Inc. All Rights Reserved.
// THIS SOURCE CODE, AND ITS USE AND DISTRIBUTION, IS SUBJECT TO THE TERMS
// AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT
//
//------------------------------------------------------------------------------
//
// File: args.c
//
// This file implements the BSP args passed to kernel from EBoot.
//
//------------------------------------------------------------------------------
#include <bsp.h>
//------------------------------------------------------------------------------
// External Variables
extern PBSP_ARGS g_pBSPARGS; // From debug.c
//------------------------------------------------------------------------------
// Local Variables
//
// TODO: UUID could be based memory chip ID. For now we keep it simple and
// use the MAC.
static UUID gUUID = { ((BSP_ARGS_DEFAULT_MAC_BYTE3 << 24) | // Data1
(BSP_ARGS_DEFAULT_MAC_BYTE2 << 16) |
(BSP_ARGS_DEFAULT_MAC_BYTE1 << 8) |
(BSP_ARGS_DEFAULT_MAC_BYTE0)),
((BSP_ARGS_DEFAULT_MAC_BYTE5 << 8) | // Data2
(BSP_ARGS_DEFAULT_MAC_BYTE4)),
0, // Data 3
0, 0, 0, 0 // Data 4
};
//------------------------------------------------------------------------------
//
// Function: OALArgsQuery
//
// This function is called from other OAL modules to return boot arguments.
// Boot arguments are typically placed in fixed memory location and they are
// filled by boot loader. In case that boot arguments can't be located
// the function should return NULL. The OAL module then must use default
// values.
//
// Parameters:
// type
// [in] The type of args.
//
// Returns:
// Pointer to VOID.
//
//------------------------------------------------------------------------------
VOID* OALArgsQuery(UINT32 type)
{
VOID *pData = NULL;
OALMSG(OAL_ARGS&&OAL_FUNC, (L"+OALArgsQuery(%d)\r\n", type));
// Check if there is expected signature
if (
g_pBSPARGS->header.signature != OAL_ARGS_SIGNATURE ||
g_pBSPARGS->header.oalVersion != OAL_ARGS_VERSION ||
g_pBSPARGS->header.bspVersion != BSP_ARGS_VERSION
) goto cleanUp;
// Depending on required args
switch (type) {
case OAL_ARGS_QUERY_DEVID:
pData = &g_pBSPARGS->deviceId;
break;
case OAL_ARGS_QUERY_KITL:
g_pBSPARGS->kitl.flags |= (OAL_KITL_FLAGS_ENABLED | OAL_KITL_FLAGS_VMINI);
// Has the bootloader provided a non-zero IP address and subnet mask?
// If not, use DHCP to obtain this information.
if ((g_pBSPARGS->kitl.ipAddress == 0) || (g_pBSPARGS->kitl.ipMask == 0)) {
g_pBSPARGS->kitl.flags |= OAL_KITL_FLAGS_DHCP;
}
// Has the bootloader provided information about which NIC it was using?
// If not, choose the CS8900A as the default.
if (g_pBSPARGS->kitl.devLoc.LogicalLoc == 0) {
g_pBSPARGS->kitl.devLoc.IfcType = Internal;
g_pBSPARGS->kitl.devLoc.BusNumber = 0;
#ifdef FORCE_KITL_ETHFEC
g_pBSPARGS->kitl.devLoc.PhysicalLoc = (PVOID)(CSP_BASE_REG_PA_FEC);
#else
g_pBSPARGS->kitl.devLoc.PhysicalLoc = (PVOID)(BSP_BASE_REG_PA_CS8900A_IOBASE);
#endif
g_pBSPARGS->kitl.devLoc.LogicalLoc = (DWORD)g_pBSPARGS->kitl.devLoc.PhysicalLoc;
}
pData = &g_pBSPARGS->kitl;
break;
// Check if this is a UUID request
case OAL_ARGS_QUERY_UUID:
// Return pointer to global UUID
pData = &gUUID;
break;
}
cleanUp:
OALMSG(OAL_ARGS&&OAL_FUNC, (L"-OALArgsQuery(pData = 0x%08x)\r\n", pData));
return pData;
}
//------------------------------------------------------------------------------
//
// Function: OALBspArgsInit
//
// This function initialize global BSP args.
//
// Parameters:
// None.
//
// Returns:
// TRUE if boot successfully, otherwise returns FALSE.
//
//------------------------------------------------------------------------------
BOOL OALBspArgsInit()
{
//
// Set up the DDK_CLOCK_SIGNAL in BSP_ARGS
//
#ifdef MX27TO2
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] = BSP_MPLL_CLK_FREQ * 2 / 3;
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SPLL] = BSP_SPLL_CLK_FREQ;
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_ARM] = (BSP_MPLL_CLK_FREQ * 2 / ((BSP_CSCR_ARMSRC)? 2:3)) / (BSP_CSCR_ARMDIV+ 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_AHB] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (BSP_CSCR_AHBDIV+ 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_IPG] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_AHB] / (BSP_CSCR_IPDIV + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_NFC] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_AHB] / (BSP_PCDR0_NFCDIV + 1);
//
// SSI1 must agree with source selected by PLLCRC_CSCR_SSI1_SEL bits in oal_startup.c
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SSI1] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SPLL] / (2 + (BSP_PCDR0_SSI1DIV >> 1));
//
// SSI2 must agree with source selected by PLLCRC_CSCR_SSI2_SEL bits in oal_startup.c
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SSI2] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SPLL] / (2 + (BSP_PCDR0_SSI2DIV >> 1));
//
// H264 must agree with source selected by PLLCRC_CSCR_H264_SEL bits in oal_startup.c
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_H264] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (2 + (BSP_PCDR0_H264DIV >> 1));
#else
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] = BSP_MPLL_CLK_FREQ;
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SPLL] = BSP_SPLL_CLK_FREQ;
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_ARM] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (BSP_CSCR_PRESC + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_AHB] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_ARM] / (BSP_CSCR_BCLKDIV + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_IPG] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_AHB] / (BSP_CSCR_IPDIV + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_NFC] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_ARM] / (BSP_PCDR0_NFCDIV + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SSI1] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL];
if ( (BSP_PCDR0_SSI1DIV>>1) > 0 )
{
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SSI1] /= (BSP_PCDR0_SSI1DIV>>1);
}
else
{
OALMSG(OAL_ERROR,(TEXT("%s: Invalid BSP_PCDR0_SSI1DIV value (%d)\r\n"),
TEXT(__FUNCTION__),
BSP_PCDR0_SSI1DIV));
}
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SSI2] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL];
if ( (BSP_PCDR0_SSI2DIV>>1) > 0 )
{
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SSI2] /= (BSP_PCDR0_SSI2DIV>>1);
}
else
{
OALMSG(OAL_ERROR,(TEXT("%s: Invalid BSP_PCDR0_SSI2DIV value (%d)\r\n"),
TEXT(__FUNCTION__),
BSP_PCDR0_SSI2DIV));
}
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_H264] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL];
if ( (BSP_PCDR0_H264DIV>>1) > 0 )
{
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_H264] /= (BSP_PCDR0_H264DIV>>1);
}
else
{
OALMSG(OAL_ERROR,(TEXT("%s: Invalid BSP_PCDR0_H264DIV value (%d)\r\n"),
TEXT(__FUNCTION__),
BSP_PCDR0_H264DIV));
}
#endif
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_PERDIV1] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (BSP_PCDR1_PERDIV1 + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_PERDIV2] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (BSP_PCDR1_PERDIV2 + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_PERDIV3] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (BSP_PCDR1_PERDIV3 + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_PERDIV4] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (BSP_PCDR1_PERDIV4 + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_USB] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SPLL] / (BSP_CSCR_USB_DIV + 1);
//
// MSHC must agree with source selected by PLLCRC_CSCR_MSHC_SEL bits in oal_startup.c
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MSHC] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_SPLL] / (BSP_PCDR0_MSHCDIV + 1);
g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_CSI] = g_pBSPARGS->clockFreq[DDK_CLOCK_SIGNAL_MPLL] / (BSP_PCDR1_PERDIV4 + 1);
//
// Init driver globals
//
g_pBSPARGS->emma.usingStatus = 0;
return TRUE;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -