⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ps2_keyboard.v

📁 用于AlRERA 公司DE2开发板上的USB 调试的实例
💻 V
📖 第 1 页 / 共 2 页
字号:
//-------------------------------------------------------------------------------------


`define TOTAL_BITS   11
`define EXTEND_CODE  16'hE0
`define RELEASE_CODE 16'hF0
`define LEFT_SHIFT   16'h12
`define RIGHT_SHIFT  16'h59


module ps2_keyboard (
  clk,
  reset,
  ps2_clk_en_o_,
  ps2_data_en_o_,
  ps2_clk_i,
  ps2_data_i,
  rx_extended,
  rx_released,
  rx_shift_key_on,
  rx_scan_code,
  rx_ascii,
  rx_data_ready,       // rx_read_o
  rx_read,             // rx_read_ack_i
  tx_data,
  tx_write,
  tx_write_ack_o,
  tx_error_no_keyboard_ack,
  translate
  );

// Parameters

// The timer value can be up to (2^bits) inclusive.
parameter TIMER_60USEC_VALUE_PP = 2950; // Number of sys_clks for 60usec.
parameter TIMER_60USEC_BITS_PP  = 12;   // Number of bits needed for timer
parameter TIMER_5USEC_VALUE_PP = 186;   // Number of sys_clks for debounce
parameter TIMER_5USEC_BITS_PP  = 8;     // Number of bits needed for timer
parameter TRAP_SHIFT_KEYS_PP = 0;       // Default: No shift key trap.

// State encodings, provided as parameters
// for flexibility to the one instantiating the module.
// In general, the default values need not be changed.

// State "m1_rx_clk_l" has been chosen on purpose.  Since the input
// synchronizing flip-flops initially contain zero, it takes one clk
// for them to update to reflect the actual (idle = high) status of
// the I/O lines from the keyboard.  Therefore, choosing 0 for m1_rx_clk_l
// allows the state machine to transition to m1_rx_clk_h when the true
// values of the input signals become present at the outputs of the
// synchronizing flip-flops.  This initial transition is harmless, and it
// eliminates the need for a "reset" pulse before the interface can operate.

parameter m1_rx_clk_h = 1;
parameter m1_rx_clk_l = 0;
parameter m1_rx_falling_edge_marker = 13;
parameter m1_rx_rising_edge_marker = 14;
parameter m1_tx_force_clk_l = 3;
parameter m1_tx_first_wait_clk_h = 10;
parameter m1_tx_first_wait_clk_l = 11;
parameter m1_tx_reset_timer = 12;
parameter m1_tx_wait_clk_h = 2;
parameter m1_tx_clk_h = 4;
parameter m1_tx_clk_l = 5;
parameter m1_tx_wait_keyboard_ack = 6;
parameter m1_tx_done_recovery = 7;
parameter m1_tx_error_no_keyboard_ack = 8;
parameter m1_tx_rising_edge_marker = 9;
parameter m2_rx_data_ready = 1;
parameter m2_rx_data_ready_ack = 0;

  
// I/O declarations
input clk;
input reset;
output ps2_clk_en_o_ ;
output ps2_data_en_o_ ;
input  ps2_clk_i ;
input  ps2_data_i ;
output rx_extended;
output rx_released;
output rx_shift_key_on;
output [7:0] rx_scan_code;
output [7:0] rx_ascii;
output rx_data_ready;
input rx_read;
input [7:0] tx_data;
input tx_write;
output tx_write_ack_o;
output tx_error_no_keyboard_ack;
input  translate ;

reg rx_extended;
reg rx_released;
reg [7:0] rx_scan_code;
reg [7:0] rx_ascii;
reg rx_data_ready;
reg tx_error_no_keyboard_ack;

// Internal signal declarations
wire timer_60usec_done;
wire timer_5usec_done;
wire extended;
wire released;
wire shift_key_on;

                         // NOTE: These two signals used to be one.  They
                         //       were split into two signals because of
                         //       shift key trapping.  With shift key
                         //       trapping, no event is generated externally,
                         //       but the "hold" data must still be cleared
                         //       anyway regardless, in preparation for the
                         //       next scan codes.
wire rx_output_event;    // Used only to clear: hold_released, hold_extended
wire rx_output_strobe;   // Used to produce the actual output.

wire tx_parity_bit;
wire rx_shifting_done;
wire tx_shifting_done;
wire [11:0] shift_key_plus_code;

reg [`TOTAL_BITS-1:0] q;
reg [3:0] m1_state;
reg [3:0] m1_next_state;
reg m2_state;
reg m2_next_state;
reg [3:0] bit_count;
reg enable_timer_60usec;
reg enable_timer_5usec;
reg [TIMER_60USEC_BITS_PP-1:0] timer_60usec_count;
reg [TIMER_5USEC_BITS_PP-1:0] timer_5usec_count;
reg [7:0] ascii;      // "REG" type only because a case statement is used.
reg left_shift_key;
reg right_shift_key;
reg hold_extended;    // Holds prior value, cleared at rx_output_strobe
reg hold_released;    // Holds prior value, cleared at rx_output_strobe
reg ps2_clk_s;        // Synchronous version of this input
reg ps2_data_s;       // Synchronous version of this input
reg ps2_clk_hi_z;     // Without keyboard, high Z equals 1 due to pullups.
reg ps2_data_hi_z;    // Without keyboard, high Z equals 1 due to pullups.

//--------------------------------------------------------------------------
// Module code

assign ps2_clk_en_o_  = ps2_clk_hi_z  ;
assign ps2_data_en_o_ = ps2_data_hi_z ;

// Input "synchronizing" logic -- synchronizes the inputs to the state
// machine clock, thus avoiding errors related to
// spurious state machine transitions.
always @(posedge clk)
begin
  ps2_clk_s <= ps2_clk_i;
  ps2_data_s <= ps2_data_i;
end

// State register
always @(posedge clk)
begin : m1_state_register
  if (reset) m1_state <= m1_rx_clk_h;
  else m1_state <= m1_next_state;
end

// State transition logic
always @(m1_state
         or q
         or tx_shifting_done
         or tx_write
         or ps2_clk_s
         or ps2_data_s
         or timer_60usec_done
         or timer_5usec_done
         )
begin : m1_state_logic

  // Output signals default to this value, unless changed in a state condition.
  ps2_clk_hi_z <= 1;
  ps2_data_hi_z <= 1;
  tx_error_no_keyboard_ack <= 0;
  enable_timer_60usec <= 0;
  enable_timer_5usec <= 0;

  case (m1_state)

    m1_rx_clk_h :
      begin
        enable_timer_60usec <= 1;
        if (tx_write) m1_next_state <= m1_tx_reset_timer;
        else if (~ps2_clk_s) m1_next_state <= m1_rx_falling_edge_marker;
        else m1_next_state <= m1_rx_clk_h;
      end
      
    m1_rx_falling_edge_marker :
      begin
        enable_timer_60usec <= 0;
        m1_next_state <= m1_rx_clk_l;
      end

    m1_rx_rising_edge_marker :
      begin
        enable_timer_60usec <= 0;
        m1_next_state <= m1_rx_clk_h;
      end


    m1_rx_clk_l :
      begin
        enable_timer_60usec <= 1;
        if (tx_write) m1_next_state <= m1_tx_reset_timer;
        else if (ps2_clk_s) m1_next_state <= m1_rx_rising_edge_marker;
        else m1_next_state <= m1_rx_clk_l;
      end

    m1_tx_reset_timer:
      begin
        enable_timer_60usec <= 0;
        m1_next_state <= m1_tx_force_clk_l;
      end

    m1_tx_force_clk_l :
      begin
        enable_timer_60usec <= 1;
        ps2_clk_hi_z <= 0;  // Force the ps2_clk line low.
        if (timer_60usec_done) m1_next_state <= m1_tx_first_wait_clk_h;
        else m1_next_state <= m1_tx_force_clk_l;
      end

    m1_tx_first_wait_clk_h :
      begin
        enable_timer_5usec <= 1;
        ps2_data_hi_z <= 0;        // Start bit.
        if (~ps2_clk_s && timer_5usec_done)
          m1_next_state <= m1_tx_clk_l;
        else
          m1_next_state <= m1_tx_first_wait_clk_h;
      end
      
    // This state must be included because the device might possibly
    // delay for up to 10 milliseconds before beginning its clock pulses.
    // During that waiting time, we cannot drive the data (q[0]) because it
    // is possibly 1, which would cause the keyboard to abort its receive
    // and the expected clocks would then never be generated.
    m1_tx_first_wait_clk_l :
      begin
        ps2_data_hi_z <= 0;
        if (~ps2_clk_s) m1_next_state <= m1_tx_clk_l;
        else m1_next_state <= m1_tx_first_wait_clk_l;
      end

    m1_tx_wait_clk_h :
      begin
        enable_timer_5usec <= 1;
        ps2_data_hi_z <= q[0];
        if (ps2_clk_s && timer_5usec_done)
          m1_next_state <= m1_tx_rising_edge_marker;
        else
          m1_next_state <= m1_tx_wait_clk_h;
      end

    m1_tx_rising_edge_marker :
      begin
        ps2_data_hi_z <= q[0];
        m1_next_state <= m1_tx_clk_h;
      end

    m1_tx_clk_h :
      begin
        ps2_data_hi_z <= q[0];
        if (tx_shifting_done) m1_next_state <= m1_tx_wait_keyboard_ack;
        else if (~ps2_clk_s) m1_next_state <= m1_tx_clk_l;
        else m1_next_state <= m1_tx_clk_h;
      end

    m1_tx_clk_l :
      begin
        ps2_data_hi_z <= q[0];
        if (ps2_clk_s) m1_next_state <= m1_tx_wait_clk_h;
        else m1_next_state <= m1_tx_clk_l;
      end

    m1_tx_wait_keyboard_ack :
      begin
        if (~ps2_clk_s && ps2_data_s)
          m1_next_state <= m1_tx_error_no_keyboard_ack;
        else if (~ps2_clk_s && ~ps2_data_s)
          m1_next_state <= m1_tx_done_recovery;
        else m1_next_state <= m1_tx_wait_keyboard_ack;
      end

    m1_tx_done_recovery :
      begin
        if (ps2_clk_s && ps2_data_s) m1_next_state <= m1_rx_clk_h;
        else m1_next_state <= m1_tx_done_recovery;
      end

    m1_tx_error_no_keyboard_ack :
      begin
        tx_error_no_keyboard_ack <= 1;
        if (ps2_clk_s && ps2_data_s) m1_next_state <= m1_rx_clk_h;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -