⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jp5.txt

📁 这是一组JPEG解码的说明和源代码
💻 TXT
📖 第 1 页 / 共 3 页
字号:

#if 1

#define ROT6_C     35468
#define ROT6_SmC   50159
#define ROT6_SpC  121095
#define ROT17_C    77062
#define ROT17_SmC  25571
#define ROT17_SpC 128553
#define ROT37_C    58981
#define ROT37_SmC  98391
#define ROT37_SpC  19571
#define ROT13_C   167963
#define ROT13_SmC 134553
#define ROT13_SpC 201373

#else

#define FX(x) ( (int)floor((x)*(1<<FIX) + .5 ) )

static const double c1 = cos(1.*M_PI/16);
static const double c2 = cos(2.*M_PI/16);
static const double c3 = cos(3.*M_PI/16);
static const double c4 = cos(4.*M_PI/16);
static const double c5 = cos(5.*M_PI/16);
static const double c6 = cos(6.*M_PI/16);
static const double c7 = cos(7.*M_PI/16);

static const int ROT6_C   = FX(c2-c6);  // 0.541
static const int ROT6_SmC = FX(2*c6);   // 0.765
static const int ROT6_SpC = FX(2*c2);   // 1.847

static const int ROT17_C   = FX(c1+c7);  // 1.175
static const int ROT17_SmC = FX(2*c7);   // 0.390
static const int ROT17_SpC = FX(2*c1);   // 1.961

static const int ROT37_C   = FX((c3-c7)/c4);  // 0.899
static const int ROT37_SmC = FX(2*(c5+c7));   // 1.501
static const int ROT37_SpC = FX(2*(c1-c3));   // 0.298

static const int ROT13_C   = FX((c1+c3)/c4);  // 2.562
static const int ROT13_SmC = FX(2*(c3+c7));   // 2.053
static const int ROT13_SpC = FX(2*(c1+c5));   // 3.072

#endif


#define TYPE SHORT

void jpeg_idct( p_jpeg_quality_table p_table, SHORT* In )
{
 register TYPE *pIn;
 register int i;
 int mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7, Spill;
 pIn = In;
 for (i=8; i>0; --i)
 {
  // odd    

  mm4 = (int)pIn[7];
  mm5 = (int)pIn[5];
  mm6 = (int)pIn[3];
  mm7 = (int)pIn[1];

  mm2 = mm4 + mm6;
  mm3 = mm5 + mm7;
  ROTATE2(mm2, mm3,  ROT17_C, -ROT17_SpC, -ROT17_SmC, mm1);
  ROTATE2(mm4, mm7, -ROT37_C,  ROT37_SpC,  ROT37_SmC, mm1);
  ROTATE2(mm5, mm6, -ROT13_C,  ROT13_SmC,  ROT13_SpC, mm1);

  mm4 += mm2;
  mm5 += mm3;
  mm6 += mm2;
  mm7 += mm3;

  // even

  mm3 = (int)pIn[2];
  mm2 = (int)pIn[6];

  ROTATE2(mm3, mm2, ROT6_C, ROT6_SmC, -ROT6_SpC, mm1);

  LOAD_BUTF(mm0, mm1, 0, 4, Spill, pIn);
  mm0 = SHIFTL(mm0, FIX) + HALF(FIX-IPASS);
  mm1 = SHIFTL(mm1, FIX) + HALF(FIX-IPASS);
  BUTF(mm0, mm3, Spill);
  BUTF(mm1, mm2, Spill);


  BUTF(mm0, mm7, Spill);
  pIn[0] = SHIFTR(mm0, FIX-IPASS);
  pIn[7] = SHIFTR(mm7, FIX-IPASS);
  BUTF(mm1, mm6, mm0);
  pIn[1] = SHIFTR(mm1, FIX-IPASS);
  pIn[6] = SHIFTR(mm6, FIX-IPASS);
  BUTF(mm2, mm5, mm0);
  pIn[2] = SHIFTR(mm2, FIX-IPASS);
  pIn[5] = SHIFTR(mm5, FIX-IPASS);
  BUTF(mm3, mm4, mm0);
  pIn[3] = SHIFTR(mm3, FIX-IPASS);
  pIn[4] = SHIFTR(mm4, FIX-IPASS);

  pIn += 8;
 }

 pIn = In;
 for (i=8; i>0; --i)
 {
  // odd    

  mm4 = (int)pIn[7*8];
  mm5 = (int)pIn[5*8];
  mm6 = (int)pIn[3*8];
  mm7 = (int)pIn[1*8];


  mm2 = mm4 + mm6;
  mm3 = mm5 + mm7;
  ROTATE2(mm2, mm3,  ROT17_C, -ROT17_SpC, -ROT17_SmC, mm1);
  ROTATE2(mm4, mm7, -ROT37_C,  ROT37_SpC,  ROT37_SmC, mm1);
  ROTATE2(mm5, mm6, -ROT13_C,  ROT13_SmC,  ROT13_SpC, mm1);

  mm4 += mm2;
  mm5 += mm3;
  mm6 += mm2;
  mm7 += mm3;

  // even

  mm3 = (int)pIn[2*8];
  mm2 = (int)pIn[6*8];

  ROTATE2(mm3, mm2, ROT6_C, ROT6_SmC, -ROT6_SpC, mm1);

  LOAD_BUTF(mm0, mm1, 0*8, 4*8, Spill, pIn);
  mm0 = SHIFTL(mm0, FIX) + HALF(FIX+IPASS+3);
  mm1 = SHIFTL(mm1, FIX) + HALF(FIX+IPASS+3);
  BUTF(mm0, mm3, Spill);
  BUTF(mm1, mm2, Spill);

  BUTF(mm0, mm7, Spill);
  pIn[8*0] = (TYPE) SHIFTR(mm0, FIX+IPASS+3) + 128;

  if (pIn[8 * 0] < 0) pIn[8 * 0] = 0;
  else if (pIn[8 * 0] > 255) pIn[8 * 0] = 255;

  pIn[8*7] = (TYPE) SHIFTR(mm7, FIX+IPASS+3) + 128;

  if (pIn[8 * 7] < 0) pIn[8 * 7] = 0;
  else if (pIn[8 * 7] > 255) pIn[8 * 7] = 255;

  BUTF(mm1, mm6, mm0);
  pIn[8*1] = (TYPE) SHIFTR(mm1, FIX+IPASS+3) + 128;
  if (pIn[8 * 1] < 0) pIn[8 * 1] = 0;
  else if (pIn[8 * 1] > 255) pIn[8 * 1] = 255;

  pIn[8*6] = (TYPE) SHIFTR(mm6, FIX+IPASS+3) + 128;
  if (pIn[8 * 6] < 0) pIn[8 * 6] = 0;
  else if (pIn[8 * 6] > 255) pIn[8 * 6] = 255;

  BUTF(mm2, mm5, mm0);
  pIn[8*2] = (TYPE) SHIFTR(mm2, FIX+IPASS+3) + 128;

  if (pIn[8 * 2] < 0) pIn[8 * 2] = 0;
  else if (pIn[8 * 2] > 255) pIn[8 * 2] = 255;

  pIn[8*5] = (TYPE) SHIFTR(mm5, FIX+IPASS+3) + 128;
  if (pIn[8 * 5] < 0) pIn[8 * 5] = 0;
  else if (pIn[8 * 5] > 255) pIn[8 * 5] = 255;
  BUTF(mm3, mm4, mm0);
  pIn[8*3] = (TYPE) SHIFTR(mm3, FIX+IPASS+3) + 128;
  if (pIn[8 * 3] < 0) pIn[8 * 3] = 0;
  else if (pIn[8 * 3] > 255) pIn[8 * 3] = 255;
  pIn[8*4] = (TYPE) SHIFTR(mm4, FIX+IPASS+3) + 128;
  if (pIn[8 * 4] < 0) pIn[8 * 4] = 0;
  else if (pIn[8 * 4] > 255) pIn[8 * 4] = 255;

  pIn++;
 }
}

void jpeg_idct_prepare_qualitytable( p_jpeg_quality_table p_table )
{
}

新一篇: Windows输入法设计的一个遗憾 | 旧一篇: 苏泊尔耗的JPEG解码器[四]
[最终话]最惊心动魄的单元了,IDCT变换。近代图像处理技术的灵魂。本作可使用两种算法。AA&N和LLM算法。其中LLM算法的代码是在网站上找来的,仅可供教学用途。AA&N算法是偶整理的(当然,还是免不了参考别人的代码。)

介于各网站上基本都是抄来的文章,没有详细讲解的,偶就多写一点了。偶数学也不好,花了很多时间来学,理解上可能还是有不少问题,还请多包涵了^^b。

DCT算法是一个矩阵的乘法运算,并且是可逆的。因此,正向变换和反向变换可使用非常类似的算法。

JPEG的发明者曾经在FFT和DCT之间做出取舍,最终选择了DCT,是因为它有很多快速算法。

其基本的优化是,将8*8矩阵的乘法分解成两次矩阵乘法(即人们常说的二维IDCT分解为两次一维IDCT)。公式如下:

Z = AXA(t)

其中A(t)表示A的转置。

X是8*8的输入矩阵。这样,计算起来,就先对X的每一列和A的行进行计算,结果是一列,然后这一列再和A(t)的相对应行进行计算,结果又成为一行。由于每一列或一行的的每一个元素计算包括8次乘法和7次加法,所以一共有8*8*8*2次乘法和7*8*8*2次加法。(大概是这么多,偶数学也不咋滴-___-b)

然后,一维DCT还可以进一步优化,分为奇数列/行和偶数列/行:

  / Y[0] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
  | Y[1] |  =  | a  f -a -c | | X[2] |  +  | d -g -b -e | | X[3] |
  | Y[2] |     | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
  \ Y[3] /     \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /

  / Y[7] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
  | Y[6] |  =  | a  f -a -c | | X[2] |  -  | d -g -b -e | | X[3] |
  | Y[5] |  | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
  \ Y[4] /  \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /

其中Y[0]-Y[7]都是1*8的矩阵,X[1]-X[7]也都是1*8的矩阵。

{a, b, c, d, e, f, g} =  1/2 { cos(pi/4), cos(pi/16), cos(pi/8), cos(3pi/16), cos(5pi/16), cos(3pi/8), cos(7pi/16) }

在这之后的优化算法,就是各有千秋了,比较著名的有ChenDCT,LeeDCT,AA&N算法和LLM算法。其中AA&N算法只需要29次加法和5次乘法。(注意,它是指每次一维运算要29次加法和5次乘法,一共是需要29*8*2次加法和5*8*2次乘法的)。但它的条件是要对输入的矩阵首先各乘以一个因子。因为在矩阵从哈夫曼解开后,是游程码,游程码解开后,要进行反量化,这一次乘法是省不了的,所以把因子先乘到量化表上,就可以省去这些时间了(2007/1/26: 原来写成4次了,经Mr.Chen提醒现改正)。

本作因考虑移植性,使用的AA&N算法是整数算法,对小数进行了乘以256的操作。本作中的任何地方都不会用到浮点数。

LLM算法的速度和AA&N差不多(可能是偶写得太差了?-___-b)

jpegidct.h(这个头文件需要包含,以下两个c文件只能任选一个加到工程中。)

************************************************************************************************************

/**************************************************************************************************

  superarhow's JPEG decoder

  by superarhow(superarhow@hotmail.com).  All rights reserved.

 **************************************************************************************************/

#pragma once

#include "jpegdec2.h"

/* 2D-IDCT 变换 */
void jpeg_idct( p_jpeg_quality_table p_table, SHORT* in );
void jpeg_idct_prepare_qualitytable( p_jpeg_quality_table p_table ); 

*******************************************************************************************************

jpegidct.c(AA&N算法)

********************************************************************************************************

#include "jpegidct.h"
#include "memory.h"

/*
 *  AA&N reverse-dct arithmetic implemention
 * {a, b, c, d, e, f, g} =  1/2 { cos(pi/4), cos(pi/16), cos(pi/8), cos(3pi/16), cos(5pi/16), cos(3pi/8), cos(7pi/16) }
 *  if we let: (out[8][8] is the temporary place to hold our first 1D-DCT data)
 * X[0] = ( in[0, 0], in[1, 0], in[2, 0] ... in[7, 0] )
 * X[1] = ( in[0, 1], in[1, 1], in[2, 1] ... in[7, 1] )
 * ...
 * X[7] = ( in[0, 7], in[1, 7], in[2, 7] ... in[7, 7] )
 * Y[0] = ( out[0, 0], out[1, 0], out[2, 0] ... out[7, 0] )
 * Y[1] = ( out[0, 1], out[1, 1], out[2, 1] ... out[7, 1] )
 * ...
 * Y[7] = ( out[0, 7], out[1, 7], out[2, 7] ... out[7, 7] )
 * we'll have:
 *
 *  / Y[0] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
 *  | Y[1] |  =  | a  f -a -c | | X[2] |  +  | d -g -b -e | | X[3] |
 *  | Y[2] |     | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
 *  \ Y[3] /     \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /
 *
 *  / Y[7] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
 *  | Y[6] |  =  | a  f -a -c | | X[2] |  -  | d -g -b -e | | X[3] |
 *  | Y[5] |  | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
 *  \ Y[4] /  \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /
 *
/* const * 8 */
#define FIX_1414 362
#define FIX_1847 473
#define FIX_1082 277
#define FIX_2613 669

#define FIX_MULDIV(p, q) ((INT32)(p) * (q) / 256)

void jpeg_idct( p_jpeg_quality_table p_table, SHORT* in )
{
 BYTE i;
 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 INT32 tmp10, tmp11, tmp12, tmp13;
 INT32 z5, z10, z11, z12, z13;
 INT32 work_maze[64];
 SHORT *p_row, *p_out;
 INT32 *p_col, *p_work;
 DWORD *p_dw_value;

 p_row = in;
 p_work = work_maze;
 p_dw_value = p_table->values;

#define ROW(n) ((INT32)p_row[n*8] * p_dw_value[n*8])
#define COL(n) p_col[n]
 /*
  * first 1-D IDCT col->row
  */
 for ( i = 0; i < 8; ++i ) {

  if (p_row[1*8] == 0 && p_row[2*8] == 0 && p_row[3*8] == 0 && 
   p_row[4*8] == 0 && p_row[5*8] == 0 && p_row[6*8] == 0 && 
   p_row[7*8] == 0) {
    p_work[0*8] = p_work[1*8] = p_work[2*8] = p_work[3*8]
    = p_work[4*8] = p_work[5*8] = p_work[6*8] = p_work[7*8] = ROW(0);
    /* next col */
    ++p_work;
    ++p_row;
    ++p_dw_value;
    continue;
   }

  /* Even part */

  tmp0 = ROW(0);
  tmp1 = ROW(2);
  tmp2 = ROW(4);
  tmp3 = ROW(6);
  tmp4 = ROW(1);
  tmp5 = ROW(3);
  tmp6 = ROW(5);
  tmp7 = ROW(7);

  tmp10 = tmp0 + tmp2; /* phase 3 */
  tmp11 = tmp0 - tmp2;

  tmp13 = tmp1 + tmp3; /* phases 5-3 */
  tmp12 = FIX_MULDIV(tmp1 - tmp3, FIX_1414) - tmp13; /* 2*c4 */

  tmp0 = tmp10 + tmp13; /* phase 2 */
  tmp3 = tmp10 - tmp13;
  tmp1 = tmp11 + tmp12;
  tmp2 = tmp11 - tmp12;

  /* Odd part */

  z13 = tmp6 + tmp5;  /* phase 6 */
  z10 = tmp6 - tmp5;
  z11 = tmp4 + tmp7;
  z12 = tmp4 - tmp7;

  tmp7 = z11 + z13;  /* phase 5 */

  tmp11 = FIX_MULDIV(z11 - z13, FIX_1414); /* 2*c4 */

  z5 = FIX_MULDIV(z10 + z12, FIX_1847); /* 2*c2 */
  tmp10 = FIX_MULDIV(z12, FIX_1082) - z5; /* 2*(c2-c6) */
  tmp12 = FIX_MULDIV(z10, -FIX_2613) + z5; /* -2*(c2+c6) */

  tmp6 = tmp12 - tmp7; /* phase 2 */
  tmp5 = tmp11 - tmp6;
  tmp4 = tmp10 + tmp5;

  p_work[0*8] = tmp0 + tmp7;
  p_work[7*8] = tmp0 - tmp7;
  p_work[1*8] = tmp1 + tmp6;
  p_work[6*8] = tmp1 - tmp6;
  p_work[2*8] = tmp2 + tmp5;
  p_work[5*8] = tmp2 - tmp5;
  p_work[4*8] = tmp3 + tmp4;
  p_work[3*8] = tmp3 - tmp4;

  /* next col */
  ++p_work;
  ++p_row;
  ++p_dw_value;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -