⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jp5.txt

📁 这是一组JPEG解码的说明和源代码
💻 TXT
📖 第 1 页 / 共 3 页
字号:
新一篇: Windows输入法设计的一个遗憾 | 旧一篇: 苏泊尔耗的JPEG解码器[四]
[最终话]最惊心动魄的单元了,IDCT变换。近代图像处理技术的灵魂。本作可使用两种算法。AA&N和LLM算法。其中LLM算法的代码是在网站上找来的,仅可供教学用途。AA&N算法是偶整理的(当然,还是免不了参考别人的代码。)

介于各网站上基本都是抄来的文章,没有详细讲解的,偶就多写一点了。偶数学也不好,花了很多时间来学,理解上可能还是有不少问题,还请多包涵了^^b。

DCT算法是一个矩阵的乘法运算,并且是可逆的。因此,正向变换和反向变换可使用非常类似的算法。

JPEG的发明者曾经在FFT和DCT之间做出取舍,最终选择了DCT,是因为它有很多快速算法。

其基本的优化是,将8*8矩阵的乘法分解成两次矩阵乘法(即人们常说的二维IDCT分解为两次一维IDCT)。公式如下:

Z = AXA(t)

其中A(t)表示A的转置。

X是8*8的输入矩阵。这样,计算起来,就先对X的每一列和A的行进行计算,结果是一列,然后这一列再和A(t)的相对应行进行计算,结果又成为一行。由于每一列或一行的的每一个元素计算包括8次乘法和7次加法,所以一共有8*8*8*2次乘法和7*8*8*2次加法。(大概是这么多,偶数学也不咋滴-___-b)

然后,一维DCT还可以进一步优化,分为奇数列/行和偶数列/行:

  / Y[0] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
  | Y[1] |  =  | a  f -a -c | | X[2] |  +  | d -g -b -e | | X[3] |
  | Y[2] |     | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
  \ Y[3] /     \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /

  / Y[7] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
  | Y[6] |  =  | a  f -a -c | | X[2] |  -  | d -g -b -e | | X[3] |
  | Y[5] |  | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
  \ Y[4] /  \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /

其中Y[0]-Y[7]都是1*8的矩阵,X[1]-X[7]也都是1*8的矩阵。

{a, b, c, d, e, f, g} =  1/2 { cos(pi/4), cos(pi/16), cos(pi/8), cos(3pi/16), cos(5pi/16), cos(3pi/8), cos(7pi/16) }

在这之后的优化算法,就是各有千秋了,比较著名的有ChenDCT,LeeDCT,AA&N算法和LLM算法。其中AA&N算法只需要29次加法和5次乘法。(注意,它是指每次一维运算要29次加法和5次乘法,一共是需要29*8*2次加法和5*8*2次乘法的)。但它的条件是要对输入的矩阵首先各乘以一个因子。因为在矩阵从哈夫曼解开后,是游程码,游程码解开后,要进行反量化,这一次乘法是省不了的,所以把因子先乘到量化表上,就可以省去这些时间了(2007/1/26: 原来写成4次了,经Mr.Chen提醒现改正)。

本作因考虑移植性,使用的AA&N算法是整数算法,对小数进行了乘以256的操作。本作中的任何地方都不会用到浮点数。

LLM算法的速度和AA&N差不多(可能是偶写得太差了?-___-b)

jpegidct.h(这个头文件需要包含,以下两个c文件只能任选一个加到工程中。)

************************************************************************************************************

/**************************************************************************************************

  superarhow's JPEG decoder

  by superarhow(superarhow@hotmail.com).  All rights reserved.

 **************************************************************************************************/

#pragma once

#include "jpegdec2.h"

/* 2D-IDCT 变换 */
void jpeg_idct( p_jpeg_quality_table p_table, SHORT* in );
void jpeg_idct_prepare_qualitytable( p_jpeg_quality_table p_table ); 

*******************************************************************************************************

jpegidct.c(AA&N算法)

********************************************************************************************************

#include "jpegidct.h"
#include "memory.h"

/*
 *  AA&N reverse-dct arithmetic implemention
 * {a, b, c, d, e, f, g} =  1/2 { cos(pi/4), cos(pi/16), cos(pi/8), cos(3pi/16), cos(5pi/16), cos(3pi/8), cos(7pi/16) }
 *  if we let: (out[8][8] is the temporary place to hold our first 1D-DCT data)
 * X[0] = ( in[0, 0], in[1, 0], in[2, 0] ... in[7, 0] )
 * X[1] = ( in[0, 1], in[1, 1], in[2, 1] ... in[7, 1] )
 * ...
 * X[7] = ( in[0, 7], in[1, 7], in[2, 7] ... in[7, 7] )
 * Y[0] = ( out[0, 0], out[1, 0], out[2, 0] ... out[7, 0] )
 * Y[1] = ( out[0, 1], out[1, 1], out[2, 1] ... out[7, 1] )
 * ...
 * Y[7] = ( out[0, 7], out[1, 7], out[2, 7] ... out[7, 7] )
 * we'll have:
 *
 *  / Y[0] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
 *  | Y[1] |  =  | a  f -a -c | | X[2] |  +  | d -g -b -e | | X[3] |
 *  | Y[2] |     | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
 *  \ Y[3] /     \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /
 *
 *  / Y[7] \     / a  c  a  f \ / X[0] \     / b  d  e  g \ / X[1] \
 *  | Y[6] |  =  | a  f -a -c | | X[2] |  -  | d -g -b -e | | X[3] |
 *  | Y[5] |  | a -f -a  c | | X[4] |     | e -b  g  d | | X[5] |
 *  \ Y[4] /  \ a -c  a -f / \ X[6] /     \ g -e  d -b / \ X[7] /
 *
/* const * 8 */
#define FIX_1414 362
#define FIX_1847 473
#define FIX_1082 277
#define FIX_2613 669

#define FIX_MULDIV(p, q) ((INT32)(p) * (q) / 256)

void jpeg_idct( p_jpeg_quality_table p_table, SHORT* in )
{
 BYTE i;
 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 INT32 tmp10, tmp11, tmp12, tmp13;
 INT32 z5, z10, z11, z12, z13;
 INT32 work_maze[64];
 SHORT *p_row, *p_out;
 INT32 *p_col, *p_work;
 DWORD *p_dw_value;

 p_row = in;
 p_work = work_maze;
 p_dw_value = p_table->values;

#define ROW(n) ((INT32)p_row[n*8] * p_dw_value[n*8])
#define COL(n) p_col[n]
 /*
  * first 1-D IDCT col->row
  */
 for ( i = 0; i < 8; ++i ) {

  if (p_row[1*8] == 0 && p_row[2*8] == 0 && p_row[3*8] == 0 && 
   p_row[4*8] == 0 && p_row[5*8] == 0 && p_row[6*8] == 0 && 
   p_row[7*8] == 0) {
    p_work[0*8] = p_work[1*8] = p_work[2*8] = p_work[3*8]
    = p_work[4*8] = p_work[5*8] = p_work[6*8] = p_work[7*8] = ROW(0);
    /* next col */
    ++p_work;
    ++p_row;
    ++p_dw_value;
    continue;
   }

  /* Even part */

  tmp0 = ROW(0);
  tmp1 = ROW(2);
  tmp2 = ROW(4);
  tmp3 = ROW(6);
  tmp4 = ROW(1);
  tmp5 = ROW(3);
  tmp6 = ROW(5);
  tmp7 = ROW(7);

  tmp10 = tmp0 + tmp2; /* phase 3 */
  tmp11 = tmp0 - tmp2;

  tmp13 = tmp1 + tmp3; /* phases 5-3 */
  tmp12 = FIX_MULDIV(tmp1 - tmp3, FIX_1414) - tmp13; /* 2*c4 */

  tmp0 = tmp10 + tmp13; /* phase 2 */
  tmp3 = tmp10 - tmp13;
  tmp1 = tmp11 + tmp12;
  tmp2 = tmp11 - tmp12;

  /* Odd part */

  z13 = tmp6 + tmp5;  /* phase 6 */
  z10 = tmp6 - tmp5;
  z11 = tmp4 + tmp7;
  z12 = tmp4 - tmp7;

  tmp7 = z11 + z13;  /* phase 5 */

  tmp11 = FIX_MULDIV(z11 - z13, FIX_1414); /* 2*c4 */

  z5 = FIX_MULDIV(z10 + z12, FIX_1847); /* 2*c2 */
  tmp10 = FIX_MULDIV(z12, FIX_1082) - z5; /* 2*(c2-c6) */
  tmp12 = FIX_MULDIV(z10, -FIX_2613) + z5; /* -2*(c2+c6) */

  tmp6 = tmp12 - tmp7; /* phase 2 */
  tmp5 = tmp11 - tmp6;
  tmp4 = tmp10 + tmp5;

  p_work[0*8] = tmp0 + tmp7;
  p_work[7*8] = tmp0 - tmp7;
  p_work[1*8] = tmp1 + tmp6;
  p_work[6*8] = tmp1 - tmp6;
  p_work[2*8] = tmp2 + tmp5;
  p_work[5*8] = tmp2 - tmp5;
  p_work[4*8] = tmp3 + tmp4;
  p_work[3*8] = tmp3 - tmp4;

  /* next col */
  ++p_work;
  ++p_row;
  ++p_dw_value;
 }

 /*
   * second 1-D IDCT row->col
  */
 p_col = work_maze;
 p_out = in;
 for ( i = 0; i < 8; ++i ) {
  tmp0 = COL(0);
  tmp1 = COL(2);
  tmp2 = COL(4);
  tmp3 = COL(6);
  tmp4 = COL(1);
  tmp5 = COL(3);
  tmp6 = COL(5);
  tmp7 = COL(7);

  tmp10 = tmp0 + tmp2; /* phase 3 */
  tmp11 = tmp0 - tmp2;

  tmp13 = tmp1 + tmp3; /* phases 5-3 */
  tmp12 = FIX_MULDIV(tmp1 - tmp3, FIX_1414) - tmp13; /* 2*c4 */

  tmp0 = tmp10 + tmp13; /* phase 2 */
  tmp3 = tmp10 - tmp13;
  tmp1 = tmp11 + tmp12;
  tmp2 = tmp11 - tmp12;

  /* Odd part */

  z13 = tmp6 + tmp5;  /* phase 6 */
  z10 = tmp6 - tmp5;
  z11 = tmp4 + tmp7;
  z12 = tmp4 - tmp7;

  tmp7 = z11 + z13;  /* phase 5 */
  tmp11 = FIX_MULDIV(z11 - z13, FIX_1414); /* 2*c4 */

  z5 = FIX_MULDIV(z10 + z12, FIX_1847); /* 2*c2 */
  tmp10 = FIX_MULDIV(z12, FIX_1082) - z5; /* 2*(c2-c6) */
  tmp12 = FIX_MULDIV(z10, -FIX_2613) + z5; /* -2*(c2+c6) */

  tmp6 = tmp12 - tmp7; /* phase 2 */
  tmp5 = tmp11 - tmp6;
  tmp4 = tmp10 + tmp5;

  p_out[0] = (tmp0 + tmp7) / 2048;
  p_out[0] += 128;
  if (p_out[0] < 0) p_out[0] = 0; else if (p_out[0] > 255) p_out[0] = 255;
  p_out[7] = (tmp0 - tmp7) / 2048;
  p_out[7] += 128;
  if (p_out[7] < 0) p_out[7] = 0; else if (p_out[7] > 255) p_out[7] = 255;
  p_out[1] = (tmp1 + tmp6) / 2048;
  p_out[1] += 128;
  if (p_out[1] < 0) p_out[1] = 0; else if (p_out[1] > 255) p_out[1] = 255;
  p_out[6] = (tmp1 - tmp6) / 2048;
  p_out[6] += 128;
  if (p_out[6] < 0) p_out[6] = 0; else if (p_out[6] > 255) p_out[6] = 255;
  p_out[2] = (tmp2 + tmp5) / 2048;
  p_out[2] += 128;
  if (p_out[2] < 0) p_out[2] = 0; else if (p_out[2] > 255) p_out[2] = 255;
  p_out[5] = (tmp2 - tmp5) / 2048;
  p_out[5] += 128;
  if (p_out[5] < 0) p_out[5] = 0; else if (p_out[5] > 255) p_out[5] = 255;
  p_out[4] = (tmp3 + tmp4) / 2048;
  p_out[4] += 128;
  if (p_out[4] < 0) p_out[4] = 0; else if (p_out[4] > 255) p_out[4] = 255;
  p_out[3] = (tmp3 - tmp4) / 2048;
  p_out[3] += 128;
  if (p_out[3] < 0) p_out[3] = 0; else if (p_out[3] > 255) p_out[3] = 255;

  /* next col */
  p_out += 8;
  p_col += 8;
 }

}

/* when we use AA&N method, we need the function to be implemented, otherwise, left it empty */
/* we shift the factor left 5 bits for our integer operations */
void jpeg_idct_prepare_qualitytable( p_jpeg_quality_table p_table )
{
 static INT32 aan_factors[8] = { 256, 355, 334, 301, 256, 201, 139, 71 };
 static BYTE _zig_zag[64] = {
  0, 1, 5, 6,14,15,27,28,
  2, 4, 7,13,16,26,29,42,
  3, 8,12,17,25,30,41,43,
  9,11,18,24,31,40,44,53,
  10,19,23,32,39,45,52,54,
  20,22,33,38,46,51,55,60,
  21,34,37,47,50,56,59,61,
  35,36,48,49,57,58,62,63
 };
 BYTE i, j;
 DWORD values[64];
 for ( j = 0; j < 8; ++j ) {
  for ( i = 0; i < 8; ++i ) {   
   values[i + j * 8] = p_table->values[_zig_zag[i + j * 8]] * aan_factors[i] * aan_factors[j] / 256;
  }
 }
 p_table->process_in_idct = 1;
 memcpy(p_table->values, values, sizeof(DWORD) * 64);
}

**************************************************************************************************************

sklidct.c(LLM算法,仅可供教学研究用,详情请访问网站http://skal.planet-d.net)

**************************************************************************************************************

#include "jpegdec2.h"

/********************************************************
* Some code. Copyright (C) 2003 by Pascal Massimino.   *
* All Rights Reserved.      (http://skal.planet-d.net) *
* For Educational/Academic use ONLY.                   *
********************************************************/
/*
*  skl_dct.cpp
*
*  "Fast and precise" LLM implementation of FDCT/IDCT, where 
*  rotations are decomposed using:
*    tmp = (x+y).cos t
*    x' = tmp + y.(sin t - cos t)
*    y' = tmp - x.(sin t + cos t)
*
*  See details at http://skl.planet-d.net/coding/dct.html
*  and at the end of this file...
*
* Reference (e.g.):
*  Loeffler C., Ligtenberg A., and Moschytz C.S.: 
*    Practical Fast 1D DCT Algorithm with Eleven Multiplications, 
*  Proc. ICASSP 1989, 988-991.
*
*  IEEE-1180-like error specs for FDCT:
* Peak error:   1.0000
* Peak MSE:     0.0340
* Overall MSE:  0.0200
* Peak ME:      0.0191
* Overall ME:   -0.0033
*
*  error specs for IDCT:
* Peak error:   1.0000
* Peak MSE:     0.0065
* Overall MSE:  0.0051
* Peak ME:      0.0015
* Overall ME:   0.0000
*
********************************************************/

#define LOAD_BUTF(m1, m2, a, b, tmp, S) \
 (m1) = (S)[(a)] + (S)[(b)]; \
 (m2) = (S)[(a)] - (S)[(b)]

#define BUTF(a, b, tmp) \
 (tmp) = (a)+(b); \
 (b) = (a)-(b);   \
 (a) = (tmp)

#define ROTATE(m1,m2,c,k1,k2,tmp,Fix,Rnd) \
 (tmp) = ( (m1) + (m2) )*(c); \
 (m1) *= k1; \
 (m2) *= k2; \
 (tmp) += (Rnd); \
 (m1) = ((m1)+(tmp))>>Fix; \
 (m2) = ((m2)+(tmp))>>Fix;

#define ROTATE2(m1,m2,c,k1,k2,tmp) \
 (tmp) = ( (m1) + (m2) )*(c); \
 (m1) *= k1; \
 (m2) *= k2; \
 (m1) = (m1)+(tmp); \
 (m2) = (m2)+(tmp);

#define ROTATE0(m1,m2,c,k1,k2,tmp) \
 (m1) = ( (m2) )*(c); \
 (m2) = (m2)*k2+(m1);

#define SHIFTL(x,n)   ((x)<<(n))
#define SHIFTR(x, n)  ((x)>>(n))
#define HALF(n)       (1<<((n)-1))

#define IPASS 3
#define FPASS 2
#define FIX  16

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -