⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stomata.f90

📁 CLM集合卡曼滤波数据同化算法
💻 F90
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE stomata ( vmax25 ,effcon ,slti  ,hlti   ,shti ,&               hhti ,trda ,trdm   ,trop   ,gradm ,binter ,tm   ,&               psrf ,po2m ,pco2m  ,pco2a  ,ea    ,ei    ,tlef  ,par  ,&               rb   ,ra   ,rstfac ,cint   ,assim ,respc  ,rst   )  !=======================================================================        !                                                                               !     calculation of canopy photosynthetic rate using the integrated            !     model relating assimilation and stomatal conductance.                     !!     Original author: Yongjiu Dai, 08/11/2001!!     units are converted from mks to biological units in this routine.         !                                                                               !                          units                                                !                         -------                                               !                                                                               !      pco2m, pco2a, pco2i, po2m                : pascals                       !      co2a, co2s, co2i, h2oa, h2os, h2oa       : mol mol-1                     !      vmax25, respcp, assim, gs, gb, ga        : mol m-2 s-1                   !      effcon                                   : mol co2 mol quanta-1          !      1/rb, 1/ra, 1/rst                        : m s-1                         !                                                                               !                       conversions                                             !                      -------------                                            !                                                                               !      1 mol h2o           = 0.018 kg                                           !      1 mol co2           = 0.044 kg                                           !      h2o (mol mol-1)     = ea / psrf ( pa pa-1 )                              !      h2o (mol mol-1)     = q*mm/(q*mm + 1)                                    !      gs  (co2)           = gs (h2o) * 1./1.6                                  !      gs  (mol m-2 s-1 )  = gs (m s-1) * 44.6*tf/t*p/po                        !      par (mol m-2 s-1 )  = par(w m-2) * 4.6*1.e-6                             !      mm  (molair/molh2o) = 1.611                                              !                                                                               !----------------------------------------------------------------------          implicit none                                                                         real,intent(in) :: &      effcon,       &! quantum efficiency of RuBP regeneration (mol CO2 / mol quanta)      vmax25,       &! maximum carboxylation rate at 25 C at canopy top                      ! the range : 30.e-6 <-> 100.e-6 (mol co2 m-2 s-1)      slti,         &! slope of low temperature inhibition function      (0.2)      hlti,         &! 1/2 point of low temperature inhibition function  (288.16)      shti,         &! slope of high temperature inhibition function     (0.3)      hhti,         &! 1/2 point of high temperature inhibition function (313.16)      trda,         &! temperature coefficient in gs-a model             (1.3)      trdm,         &! temperature coefficient in gs-a model             (328.16)      trop,         &! temperature coefficient in gs-a model             (298.16)      gradm,        &! conductance-photosynthesis slope parameter      binter         ! conductance-photosynthesis intercept real,intent(in) :: &      tm,           &! atmospheric air temperature (K)      psrf,         &! surface atmospheric pressure (pa)      po2m,         &! O2 concentration in atmos. (20900 pa)      pco2m,        &! CO2 concentration in atmos. (35 pa)      pco2a,        &! CO2 concentration in canopy air space (pa)      ea,           &! canopy air space vapor pressure (pa)      ei,           &! saturation h2o vapor pressure in leaf stomata (pa)      tlef,         &! leaf temperature (K)      par,          &! photosynthetic active radiation (W m-2)      rb,           &! boundary resistance from canopy to cas (s m-1)      ra,           &! aerodynamic resistance from cas to refence height (s m-1)      rstfac         ! canopy resistance stress factors to soil moisture                          real,intent(in), dimension(3) :: &      cint           ! scaling up from leaf to canopy real,intent(out) :: &! ATTENTION : all for canopy not leaf      assim,        &! canopy assimilation rate (mol m-2 s-1)                             respc,        &! canopy respiration (mol m-2 s-1)       rst            ! canopy stomatal resistance (s m-1)!-------------------- local --------------------------------------------                                                                                        real c3,           &! c3 vegetation : 1; 0 for c4      c4,           &! c4 vegetation : 1; 0 for c3      qt,           &! (tleaf - 298.16) / 10      gammas,       &! co2 compensation point (pa)      kc,           &! Michaelis-Menten constant for co2      ko,           &! Michaelis-Menten constant for o2      rrkk,         &! kc (1+o2/ko)      templ,        &! intermediate value      temph,        &! intermediate value                   vm,           &! maximum catalytic activity of Rubison (mol co2 m-2 s-1)      jmax25,       &! potential rate of whole-chain electron transport at 25 C      jmax,         &! potential rate of whole-chain electron transport (mol electron m-2 s-1)      epar,         &! electron transport rate (mol electron m-2 s-1)      respcp,       &! respiration fraction of vmax (mol co2 m-2 s-1)      bintc,        &! residual stomatal conductance for co2 (mol co2 m-2 s-1)      rgas,         &! universal gas contant (8.314 J mol-1 K-1)      tprcor,       &! coefficient for unit transfer       gbh2o,        &! one side leaf boundary layer conductance (mol m-2 s-1)      gah2o,        &! aerodynamic conductance between cas and reference height (mol m-2 s-1)      gsh2o,        &! canopy conductance (mol m-2 s-1)                               atheta,       &! wc, we coupling parameter      btheta,       &! wc & we, ws coupling parameter      omss,         &! intermediate calcuation for oms      omc,          &! rubisco limited assimilation (omega-c: mol m-2 s-1)                     ome,          &! light limited assimilation (omega-e: mol m-2 s-1)                       oms,          &! sink limited assimilation (omega-s: mol m-2 s-1)                        omp,          &! intermediate calcuation for omc, ome      co2m,         &! co2 concentration in atmos (mol mol-1)      co2a,         &! co2 concentration at cas (mol mol-1)      co2s,         &! co2 concentration at canopy surface (mol mol-1)                   co2st,        &! co2 concentration at canopy surface (mol mol-1)      co2i,         &! internal co2 concentration (mol mol-1)      pco2in,       &! internal co2 concentration at the new iteration (pa)      pco2i,        &! internal co2 concentration (pa)       es,           &! canopy surface h2o vapor pressure (pa)                   sqrtin,       &! intermediate calculation for quadratic      assmt,        &! net assimilation with a positive limitation (mol co2 m-2 s-1)      assimn,       &! net assimilation (mol co2 m-2 s-1)      hcdma,        &! a-1      aquad,        &! a: ax^2 + bx + c = 0      bquad,        &! b: ax^2 + bx + c = 0      cquad          ! c: ax^2 + bx + c = 0 real :: &      eyy(6),       &! differnce of pco2i at two iteration step      pco2y(6),     &!      range          ! integer ic!=======================================================================              c3 = 0.                                                                     if( effcon .gt. 0.07 ) c3 = 1.                                                  c4 = 1. - c3                                                          !-----------------------------------------------------------------------        ! dependence on leaf temperature !     gammas - CO2 compensation point in the absence of day respiration !     ko     - Michaelis-Menton constant for carboxylation by Rubisco !     kc     - Michaelis-Menton constant for oxygenation by Rubisco!-----------------------------------------------------------------------                                                                                             qt = 0.1*( tlef - trop )      kc = 30.     * 2.1**qt        ko = 30000.  * 1.2**qt       gammas = 0.5 * po2m / (2600. * 0.57**qt) * c3        ! = 0. for c4 plant ???      rrkk = kc * ( 1. + po2m/ko ) * c3!----------------------------------------------------------------------         ! maximun capacity ! vm     - maximum catalytic activity of Rubisco in the presence of !          saturating level of RuP2 and CO2 (mol m-2s-1)! jmax   - potential rate of whole-chain electron transport (mol m-2s-1)! epar   - electron transport rate for a given absorbed photon radiation! respc  - dark resipration (mol m-2s-1)! omss   - capacity of the leaf to export or utilize the products of photosynthesis.! binter - coefficient from observation, 0.01 for c3 plant, 0.04 for c4 plant !-----------------------------------------------------------------------              vm = vmax25 * 2.1**qt        ! (mol m-2 s-1)       templ = 1. + exp(slti*(hlti-tlef))      temph = 1. + exp(shti*(tlef-hhti))      vm = vm / temph * rstfac * c3 + vm / (templ*temph) * rstfac * c4      vm = vm * cint(1)      rgas = 8.314                 ! universal gas constant (J mol-1 K-1)!---> jmax25 = 2.39 * vmax25 - 14.2e-6        ! (mol m-2 s-1)      jmax25 = 2.1 * vmax25        ! (mol m-2 s-1)      jmax = jmax25 * exp( 37.e3 * (tlef - trop) / (rgas*trop*tlef) ) * &              ( 1. + exp( (710.*trop-220.e3)/(rgas*trop) ) ) / &                       ( 1. + exp( (710.*tlef-220.e3)/(rgas*tlef) ) )                                    ! 37000  (J mol-1)                                   ! 220000 (J mol-1)                                   ! 710    (J K-1)      jmax = jmax * rstfac      jmax = jmax * cint(2)      epar = min(4.6e-6 * par * effcon, 0.25*jmax)      respcp = 0.015 * c3 + 0.025 * c4       respc = respcp * vmax25 * 2.0**qt / ( 1. + exp( trda*(tlef-trdm )) ) * rstfac!     respc = 0.75e-6 * exp(er(?)*(1./71.02 - 1./(tlef-46.02)) )!!     respc = 0.7e-6 * 2.0**qt / ( 1. + exp( trda*(tlef-trdm )) ) * rstfac      respc = respc * cint(1)                                                                                     omss = ( vmax25/2. ) * (1.8**qt) / templ * rstfac * c3 &           + ( vmax25/5. ) * (1.8**qt) * rstfac * c4       omss = omss * cint(1)      bintc = binter * max( 0.1, rstfac )      bintc = bintc * cint(3)!-----------------------------------------------------------------------      tprcor = 44.6*273.16*psrf/1.013e5! one side leaf boundary layer conductance for water vapor [=1/(2*rb)]! ATTENTION: rb in CLM is for one side leaf, but for SiB2 rb for ! 2-side leaf, so the gbh2o shold be " 0.5/rb * tprcor/tlef "!     gbh2o  = 0.5/rb * tprcor/tlef                    ! mol m-2 s-1      gbh2o  = 1./rb * tprcor/tlef                    ! mol m-2 s-1! rb is for single leaf, but here the flux is for canopy, thus      gbh2o  = gbh2o * cint(3)!  aerodynamic condutance between canopy and reference height atmosphere      gah2o  = 1.0/ra * tprcor/tm                     ! mol m-2 s-1!-----------------------------------------------------------------------        !     first guess is midway between compensation point and maximum              

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -