📄 stomata.f90
字号:
SUBROUTINE stomata ( vmax25 ,effcon ,slti ,hlti ,shti ,& hhti ,trda ,trdm ,trop ,gradm ,binter ,tm ,& psrf ,po2m ,pco2m ,pco2a ,ea ,ei ,tlef ,par ,& rb ,ra ,rstfac ,cint ,assim ,respc ,rst ) !======================================================================= ! ! calculation of canopy photosynthetic rate using the integrated ! model relating assimilation and stomatal conductance. !! Original author: Yongjiu Dai, 08/11/2001!! units are converted from mks to biological units in this routine. ! ! units ! ------- ! ! pco2m, pco2a, pco2i, po2m : pascals ! co2a, co2s, co2i, h2oa, h2os, h2oa : mol mol-1 ! vmax25, respcp, assim, gs, gb, ga : mol m-2 s-1 ! effcon : mol co2 mol quanta-1 ! 1/rb, 1/ra, 1/rst : m s-1 ! ! conversions ! ------------- ! ! 1 mol h2o = 0.018 kg ! 1 mol co2 = 0.044 kg ! h2o (mol mol-1) = ea / psrf ( pa pa-1 ) ! h2o (mol mol-1) = q*mm/(q*mm + 1) ! gs (co2) = gs (h2o) * 1./1.6 ! gs (mol m-2 s-1 ) = gs (m s-1) * 44.6*tf/t*p/po ! par (mol m-2 s-1 ) = par(w m-2) * 4.6*1.e-6 ! mm (molair/molh2o) = 1.611 ! !---------------------------------------------------------------------- implicit none real,intent(in) :: & effcon, &! quantum efficiency of RuBP regeneration (mol CO2 / mol quanta) vmax25, &! maximum carboxylation rate at 25 C at canopy top ! the range : 30.e-6 <-> 100.e-6 (mol co2 m-2 s-1) slti, &! slope of low temperature inhibition function (0.2) hlti, &! 1/2 point of low temperature inhibition function (288.16) shti, &! slope of high temperature inhibition function (0.3) hhti, &! 1/2 point of high temperature inhibition function (313.16) trda, &! temperature coefficient in gs-a model (1.3) trdm, &! temperature coefficient in gs-a model (328.16) trop, &! temperature coefficient in gs-a model (298.16) gradm, &! conductance-photosynthesis slope parameter binter ! conductance-photosynthesis intercept real,intent(in) :: & tm, &! atmospheric air temperature (K) psrf, &! surface atmospheric pressure (pa) po2m, &! O2 concentration in atmos. (20900 pa) pco2m, &! CO2 concentration in atmos. (35 pa) pco2a, &! CO2 concentration in canopy air space (pa) ea, &! canopy air space vapor pressure (pa) ei, &! saturation h2o vapor pressure in leaf stomata (pa) tlef, &! leaf temperature (K) par, &! photosynthetic active radiation (W m-2) rb, &! boundary resistance from canopy to cas (s m-1) ra, &! aerodynamic resistance from cas to refence height (s m-1) rstfac ! canopy resistance stress factors to soil moisture real,intent(in), dimension(3) :: & cint ! scaling up from leaf to canopy real,intent(out) :: &! ATTENTION : all for canopy not leaf assim, &! canopy assimilation rate (mol m-2 s-1) respc, &! canopy respiration (mol m-2 s-1) rst ! canopy stomatal resistance (s m-1)!-------------------- local -------------------------------------------- real c3, &! c3 vegetation : 1; 0 for c4 c4, &! c4 vegetation : 1; 0 for c3 qt, &! (tleaf - 298.16) / 10 gammas, &! co2 compensation point (pa) kc, &! Michaelis-Menten constant for co2 ko, &! Michaelis-Menten constant for o2 rrkk, &! kc (1+o2/ko) templ, &! intermediate value temph, &! intermediate value vm, &! maximum catalytic activity of Rubison (mol co2 m-2 s-1) jmax25, &! potential rate of whole-chain electron transport at 25 C jmax, &! potential rate of whole-chain electron transport (mol electron m-2 s-1) epar, &! electron transport rate (mol electron m-2 s-1) respcp, &! respiration fraction of vmax (mol co2 m-2 s-1) bintc, &! residual stomatal conductance for co2 (mol co2 m-2 s-1) rgas, &! universal gas contant (8.314 J mol-1 K-1) tprcor, &! coefficient for unit transfer gbh2o, &! one side leaf boundary layer conductance (mol m-2 s-1) gah2o, &! aerodynamic conductance between cas and reference height (mol m-2 s-1) gsh2o, &! canopy conductance (mol m-2 s-1) atheta, &! wc, we coupling parameter btheta, &! wc & we, ws coupling parameter omss, &! intermediate calcuation for oms omc, &! rubisco limited assimilation (omega-c: mol m-2 s-1) ome, &! light limited assimilation (omega-e: mol m-2 s-1) oms, &! sink limited assimilation (omega-s: mol m-2 s-1) omp, &! intermediate calcuation for omc, ome co2m, &! co2 concentration in atmos (mol mol-1) co2a, &! co2 concentration at cas (mol mol-1) co2s, &! co2 concentration at canopy surface (mol mol-1) co2st, &! co2 concentration at canopy surface (mol mol-1) co2i, &! internal co2 concentration (mol mol-1) pco2in, &! internal co2 concentration at the new iteration (pa) pco2i, &! internal co2 concentration (pa) es, &! canopy surface h2o vapor pressure (pa) sqrtin, &! intermediate calculation for quadratic assmt, &! net assimilation with a positive limitation (mol co2 m-2 s-1) assimn, &! net assimilation (mol co2 m-2 s-1) hcdma, &! a-1 aquad, &! a: ax^2 + bx + c = 0 bquad, &! b: ax^2 + bx + c = 0 cquad ! c: ax^2 + bx + c = 0 real :: & eyy(6), &! differnce of pco2i at two iteration step pco2y(6), &! range ! integer ic!======================================================================= c3 = 0. if( effcon .gt. 0.07 ) c3 = 1. c4 = 1. - c3 !----------------------------------------------------------------------- ! dependence on leaf temperature ! gammas - CO2 compensation point in the absence of day respiration ! ko - Michaelis-Menton constant for carboxylation by Rubisco ! kc - Michaelis-Menton constant for oxygenation by Rubisco!----------------------------------------------------------------------- qt = 0.1*( tlef - trop ) kc = 30. * 2.1**qt ko = 30000. * 1.2**qt gammas = 0.5 * po2m / (2600. * 0.57**qt) * c3 ! = 0. for c4 plant ??? rrkk = kc * ( 1. + po2m/ko ) * c3!---------------------------------------------------------------------- ! maximun capacity ! vm - maximum catalytic activity of Rubisco in the presence of ! saturating level of RuP2 and CO2 (mol m-2s-1)! jmax - potential rate of whole-chain electron transport (mol m-2s-1)! epar - electron transport rate for a given absorbed photon radiation! respc - dark resipration (mol m-2s-1)! omss - capacity of the leaf to export or utilize the products of photosynthesis.! binter - coefficient from observation, 0.01 for c3 plant, 0.04 for c4 plant !----------------------------------------------------------------------- vm = vmax25 * 2.1**qt ! (mol m-2 s-1) templ = 1. + exp(slti*(hlti-tlef)) temph = 1. + exp(shti*(tlef-hhti)) vm = vm / temph * rstfac * c3 + vm / (templ*temph) * rstfac * c4 vm = vm * cint(1) rgas = 8.314 ! universal gas constant (J mol-1 K-1)!---> jmax25 = 2.39 * vmax25 - 14.2e-6 ! (mol m-2 s-1) jmax25 = 2.1 * vmax25 ! (mol m-2 s-1) jmax = jmax25 * exp( 37.e3 * (tlef - trop) / (rgas*trop*tlef) ) * & ( 1. + exp( (710.*trop-220.e3)/(rgas*trop) ) ) / & ( 1. + exp( (710.*tlef-220.e3)/(rgas*tlef) ) ) ! 37000 (J mol-1) ! 220000 (J mol-1) ! 710 (J K-1) jmax = jmax * rstfac jmax = jmax * cint(2) epar = min(4.6e-6 * par * effcon, 0.25*jmax) respcp = 0.015 * c3 + 0.025 * c4 respc = respcp * vmax25 * 2.0**qt / ( 1. + exp( trda*(tlef-trdm )) ) * rstfac! respc = 0.75e-6 * exp(er(?)*(1./71.02 - 1./(tlef-46.02)) )!! respc = 0.7e-6 * 2.0**qt / ( 1. + exp( trda*(tlef-trdm )) ) * rstfac respc = respc * cint(1) omss = ( vmax25/2. ) * (1.8**qt) / templ * rstfac * c3 & + ( vmax25/5. ) * (1.8**qt) * rstfac * c4 omss = omss * cint(1) bintc = binter * max( 0.1, rstfac ) bintc = bintc * cint(3)!----------------------------------------------------------------------- tprcor = 44.6*273.16*psrf/1.013e5! one side leaf boundary layer conductance for water vapor [=1/(2*rb)]! ATTENTION: rb in CLM is for one side leaf, but for SiB2 rb for ! 2-side leaf, so the gbh2o shold be " 0.5/rb * tprcor/tlef "! gbh2o = 0.5/rb * tprcor/tlef ! mol m-2 s-1 gbh2o = 1./rb * tprcor/tlef ! mol m-2 s-1! rb is for single leaf, but here the flux is for canopy, thus gbh2o = gbh2o * cint(3)! aerodynamic condutance between canopy and reference height atmosphere gah2o = 1.0/ra * tprcor/tm ! mol m-2 s-1!----------------------------------------------------------------------- ! first guess is midway between compensation point and maximum
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -