📄 osusvmtest.m
字号:
function [ConfMatrix, scores]= osuSVMTest(Samples, Labels, Ns, AlphaY, SVs, Bias, Parameters)
% USAGE:
% [ConfMatrix, scores]= osuSVMTest(Samples, Labels, Ns, AlphaY, SVs, Bias, Parameters)
%
% DESCRIPTION:
% Test the performance of a trained SVM classifier by a group of input patterns
% with their true class labels given. (both multi-class and 2-class)
%
% INPUTS:
% Samples: all the input patterns. (a row of column vectors)
% Lables: the corresponding true class labels for the input patterns in Samples.
% (a row vector) (labels are like 1, 2, 3, ..., M )
% Ns: number of SVs for each class (a row vector). This parameter is valid only
% for the multi-class case, and is 0 for the 1-svm and 2-class case.
% AlphaY: Alpha * Y, where Alpha is the non-zero Lagrange Coefficients
% Y is the corresponding {1 -1} labels.
% in multi-class case:
% [AlphaY_Class1, AlphaY_Class2, ..., AlphaY_ClassM]
% +----Ns(1)----+----Ns(2)-----+----+---Ns(M)------+
% SVs : support vectors. That is, the patterns corresponding the non-zero
% Alphas.
% in multi-class case:
% [SVs_Class1, SVs_Class2, ..., SVs_ClassM]
% +--Ns(1)---+---Ns(2)---+----+---Ns(M)---+
% Bias : the bias in the decision function, which is AlphaY*Kernel(SVs',x)-Bias.
% in multi-class case:
% [Bias_Class1, Bias_Class2, ..., Bias_ClassM]
% Parameters: the paramters required by the training algorithm.
% (a 10-element row vector)
% +-----------------------------------------------------------------
% |Kernel Type| Degree | Gamma | Coefficient | C |Cache size|epsilon|
% +-----------------------------------------------------------------
% -------------------------------------------+
% | SVM Type | nu (nu-svm) | loss tolerance |
% -------------------------------------------+
% where Kernel Type:
% 0 --- Linear
% 1 --- Polynomial: (Gamma*<X(:,i),X(:,j)>+Coefficient)^Degree
% 2 --- RBF: (exp(-Gamma*|X(:,i)-X(:,j)|^2))
% 3 --- Sigmoid: tanh(Gamma*<X(:,i),X(:,j)>+Coefficient)
% Gamma: If the input value is zero, Gamma will be set defautly as
% 1/(max_pattern_dimension) in the function. If the input
% value is non-zero, Gamma will remain unchanged in the
% function.
% C: Cost of the constrain violation (for C-SVC & C-SVR)
% Cache Size: as the buffer to hold the <X(:,i),X(:,j)> (in MB)
% epsilon: tolerance of termination criterion
% SVM Type:
% 0 --- c-SVM classifier
% 1 --- nu-SVM classifier
% 2 --- 1-SVM
% 3 --- c-SVM regressioner
% nu: the nu used in nu-SVM classifer (for 1-SVM and nu-SVM)
% loss tolerance: the epsilon in epsilon-insensitive loss function
%
% OUTPUTS:
% ConfMatrix: the confusion matrix for the multi-class case, the classification
% rate for the 2-class case, and the non-outlier rate for 1-class.
% scores: In the multi-class case, the decision function output for each class.
% (a M row matrix, each row is the decision function for a class)
% In 2-class case, the decision funciton output of this 2-class problem
%
if (nargin ~= 7)
disp(' Incorrect number of input variables.\n');
help osuSVMTest;
else
[svDim n]=size(SVs);
[sampleDim n]=size(Samples);
% make the dimension of SVs the same as that of the input patterns
if sampleDim ~=svDim
[Samples]=DimFit(Samples,svDim);
end
if Ns == 0 % for 1-svm and 2-class case (including both c-svm and u-svm)
if (Parameters(8) == 0) | (Parameters(8) == 1) % for the 2-class case
Labels=2*(1.5-Labels);
elseif (Parameters(8) == 2) %for 1-svm
Labels = ones(size(Labels));
end
[ConfMatrix, scores]= SVMTest(Samples, Labels, AlphaY, SVs, Bias, Parameters);
else
M=length(Ns);
pos=1;
for i=1:M % for multi-class case
CurrentLabels = (Labels == i);
% test one class by one class
NonClassLabelInd =find(CurrentLabels == 0);
CurrentLabels(NonClassLabelInd)=-1*ones(1,length(NonClassLabelInd));
[ClassRate, curDecisionValue]= SVMTest(Samples, CurrentLabels, AlphaY(pos:pos+Ns(i)-1), SVs(:,pos:pos+Ns(i)-1), Bias(i), Parameters);
if i == 1
scores = curDecisionValue;
else
scores = [scores; curDecisionValue];
end
pos = pos + Ns(i);
end
% the final class is the class whose decision function output is the maximum value among all others.
[v EstLabels] = max(scores,[],1);
% construct the MxM Confusion Matrix
ConfMatrix=zeros(M,M);
for i=1:M
TargetInds=find(Labels==i);
IndsN=length(TargetInds);
for j=1:M
ConfMatrix(i,j)=length(find(EstLabels(TargetInds)==j))/IndsN;
end
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -