📄 u_linearsvc.m
字号:
function [AlphaY, SVs, Bias, Parameters, Ns]=u_LinearSVC(Samples, Labels,u, Epsilon, CacheSize)
% USAGES:
% [AlphaY, SVs, Bias, Para, Ns]=u_LinearSVC(Samples, Labels)
% [AlphaY, SVs, Bias, Para, Ns]=u_LinearSVC(Samples, Labels,u)
% [AlphaY, SVs, Bias, Para, Ns]=u_LinearSVC(Samples, Labels,u, Epsilon, CacheSize)
%
% DESCRIPTION:
% Construct a linear SVM classifier from the training Samples and Labels
%
% INPUTS:
% Samples: all the training patterns. (a row of column vectors)
% Lables: the corresponding class labels for the training patterns in Samples.
% (a row vector) (labels are like 1, 2, 3, ..., M )
% u: the u parameter of the u_svc (default 0.5)
% Epsilon: tolerance of termination criterion (default 0.001)
% CacheSize: as the buffer to hold the <X(:,i),X(:,j)> (in MB) (default 35)
%
% OUTPUTS:
% AlphaY: Alpha * Y, where Alpha is the non-zero Lagrange Coefficients
% Y is the corresponding labels.
% in multi-class case:
% [AlphaY_Class1, AlphaY_Class2, ..., AlphaY_ClassM]
% +----Ns(1)----+----Ns(2)-----+----+---Ns(M)------+
% SVs : support vectors. That is, the patterns corresponding the non-zero
% Alphas.
% in multi-class case:
% [SVs_Class1, SVs_Class2, ..., SVs_ClassM]
% +--Ns(1)---+---Ns(2)---+----+---Ns(M)---+
% Bias : the bias in the decision function, which is AlphaY*Kernel(SVs',x)-Bias.
% in multi-class case:
% [Bias_Class1, Bias_Class2, ..., Bias_ClassM]
% Parameters: the paramters required by the training algorithm.
% (a 10-element row vector)
% +-----------------------------------------------------------------
% |Kernel Type| Degree | Gamma | Coefficient | C |Cache size|epsilon|
% +-----------------------------------------------------------------
% -------------------------------------------+
% | SVM Type | nu (nu-svm) | loss tolerance |
% -------------------------------------------+
% where Kernel Type:
% 0 --- Linear
% 1 --- Polynomial: (Gamma*<X(:,i),X(:,j)>+Coefficient)^Degree
% 2 --- RBF: (exp(-Gamma*|X(:,i)-X(:,j)|^2))
% 3 --- Sigmoid: tanh(Gamma*<X(:,i),X(:,j)>+Coefficient)
% Gamma: If the input value is zero, Gamma will be set defautly as
% 1/(max_pattern_dimension) in the function. If the input
% value is non-zero, Gamma will remain unchanged in the
% function.
% C: Cost of the constrain violation (for C-SVC & C-SVR)
% Cache Size: as the buffer to hold the <X(:,i),X(:,j)> (in MB)
% epsilon: tolerance of termination criterion
% SVM Type:
% 0 --- c-SVM classifier
% 1 --- nu-SVM classifier
% 2 --- 1-SVM
% 3 --- c-SVM regressioner
% nu: the nu used in nu-SVM classifer (for 1-SVM and nu-SVM)
% loss tolerance: the epsilon in epsilon-insensitive loss function
% Ns: number of SVs for each class (a row vector). This parameter is valid only
% for the multi-class case, and is 0 for the 2-class case.
%
if (nargin < 2) & (nargin > 5)
disp(' Incorrect number of input variables.\n');
help LinearSVM;
else
if (nargin <=4)
CacheSize = 35; % set cache size as 35MB
end
if (nargin <=3)
Epsilon = 0.001;
end
if (nargin <=2)
u = 0.5;
end
Parameters = [0 1 1 1 1 CacheSize Epsilon 1 u 0.3];
[AlphaY, SVs, Bias, Parameters, Ns] = osuSVMTrain(Samples, Labels, Parameters);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -