📄 osusvmtrain.m
字号:
function [AlphaY, SVs, Bias, Para, Ns] = osuSVMTrain(Samples, Labels, Parameters,Verbose)
% USAGE:
% [AlphaY, SVs, Bias, Para, Ns] = osuSVMTrain(Samples, Labels, Parameters)
% [AlphaY, SVs, Bias, Para, Ns] = osuSVMTrain(Samples, Labels, Parameters,Verbose)
%
% DESCRIPTION:
% Construct a SVM classifier (both multi-class case and 2-class case)
%
% INPUTS:
% Samples: all the training patterns. (a row of column vectors)
% Lables: the corresponding class labels for the training patterns in Samples.
% (a row vector) (labels are like 1, 2, 3, ..., M )
% Parameters: the paramters required by the training algorithm.
% (a 10-element row vector)
% +-----------------------------------------------------------------
% |Kernel Type| Degree | Gamma | Coefficient | C |Cache size|epsilon|
% +-----------------------------------------------------------------
% -------------------------------------------+
% | SVM Type | nu (nu-svm) | loss tolerance |
% -------------------------------------------+
% where Kernel Type:
% 0 --- Linear
% 1 --- Polynomial: (Gamma*<X(:,i),X(:,j)>+Coefficient)^Degree
% 2 --- RBF: (exp(-Gamma*|X(:,i)-X(:,j)|^2))
% 3 --- Sigmoid: tanh(Gamma*<X(:,i),X(:,j)>+Coefficient)
% Gamma: If the input value is zero, Gamma will be set defautly as
% 1/(max_pattern_dimension) in the function. If the input
% value is non-zero, Gamma will remain unchanged in the
% function.
% C: Cost of the constrain violation (for C-SVC & C-SVR)
% Cache Size: as the buffer to hold the <X(:,i),X(:,j)> (in MB)
% epsilon: tolerance of termination criterion
% SVM Type:
% 0 --- c-SVM classifier
% 1 --- nu-SVM classifier
% 2 --- 1-SVM
% 3 --- c-SVM regressioner
% nu: the nu used in nu-SVM classifer (for 1-SVM and nu-SVM)
% loss tolerance: the epsilon in epsilon-insensitive loss function
% Verbose: =0: the program will be very quite, providing little feedback
% =2: the program will be very verbose, providing lots of the feedback
% =1: the situation between the above two.
% default: 0
%
% OUTPUTS:
% AlphaY: Alpha * Y, where Alpha is the non-zero Lagrange Coefficients
% Y is the corresponding labels.
% in multi-class case:
% [AlphaY_Class1, AlphaY_Class2, ..., AlphaY_ClassM]
% +----Ns(1)----+----Ns(2)-----+----+---Ns(M)------+
% SVs : support vectors. That is, the patterns corresponding the non-zero
% Alphas.
% in multi-class case:
% [SVs_Class1, SVs_Class2, ..., SVs_ClassM]
% +--Ns(1)---+---Ns(2)---+----+---Ns(M)---+
% Bias : the bias in the decision function, which is AlphaY*Kernel(SVs',x)-Bias.
% in multi-class case:
% [Bias_Class1, Bias_Class2, ..., Bias_ClassM]
% Para: it is the same as the input 'Parameters'.
% Ns: number of SVs for each class (a row vector). This parameter is valid only
% for the multi-class case, and is 0 for the 1-class case and 2-class case.
%
if (nargin < 3) | (nargin > 4)
disp(' Incorrect number of input variables.\n');
help osuSVMTrain;
else
if nargin == 3
Verbose = 0;
end
Mmax=max(Labels); %label: 1, 2, 3, ..., M
Mmin=min(Labels); %label: 1, 2, 3, ..., M
M = Mmax-Mmin + 1; % number of classes
if Verbose > 0
fprintf('\n Constructing a %d-class SVM classifier.\n',M);
end
if M == 1 % for the 1-class case
Ns=0;
if Parameters(8) ~= 2
disp('Warning: your samples are all from one class. Thus, 1-SVM is adopted\n.');
Parameters(8) = 2;
Labels = ones(size(Labels));
end
[AlphaY, SVs, Bias, Para] = SVMTrain(Samples, Labels, Parameters,Verbose);
elseif M == 2 % for the 2-class case
Ns=0;
Labels=(1.5-Labels)*2; % change to {1 -1} labels, required by SVMTrain.m
[AlphaY, SVs, Bias, Para] = SVMTrain(Samples, Labels, Parameters,Verbose);
else
for i=1:M % for the multi-class case, using 1-to-rest method
CurrentLabels = (Labels == i);
% change the labels from {1..M} format to {1 -1} format one class by one class
NonClassLabelInd =find(CurrentLabels == 0);
CurrentLabels(NonClassLabelInd)=-1*ones(1,length(NonClassLabelInd));
% call the basic 2-class SVM training program
if Verbose > 0
fprintf(1,'\n Class %d: \n',i);
end
[curAlphaY, curSVs, curBias,Para] = SVMTrain(Samples, CurrentLabels, Parameters,Verbose);
if Verbose > 0
fprintf('\n');
end
% assemble the output SVM model parameters
if i==1
AlphaY=curAlphaY;
SVs=curSVs;
Bias=curBias;
Ns=length(curAlphaY);
else
AlphaY=[AlphaY curAlphaY];
SVs=[SVs curSVs];
Bias=[Bias curBias];
Ns=[Ns length(curAlphaY)];
end
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -