📄 lle.m
字号:
function mappedX = lle(X, no_dims, k, eig_impl)%LLE Runs the locally linear embedding algorithm%% mappedX = lle(X, no_dims, k, eig_impl)%% Runs the local linear embedding algorithm on dataset X to reduces its% dimensionality to no_dims. In the LLE algorithm, the number of neighbors% can be specified by k. % The function returns the embedded coordinates in mappedX.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.1b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want. However, it is appreciated if you maintain the name of the original% author.%% (C) Laurens van der Maaten% Maastricht University, 2007 if ~exist('no_dims', 'var') no_dims = 2; end if ~exist('k', 'var') k = 12; end if ~exist('eig_impl', 'var') eig_impl = 'Matlab'; end % Get dimensionality and number of dimensions [n, d] = size(X); % Compute pairwise distances and find nearest neighbours (vectorized implementation) disp('Finding nearest neighbors...'); [distance, neighborhood] = find_nn(X, k + 1); X = X'; neighborhood = neighborhood'; neighborhood = neighborhood(2:k+1,:); % Find reconstruction weights for all points by solving the MSE problem % of reconstructing a point from each neighbours. A used constraint is % that the sum of the reconstruction weights for a point should be 1. disp('Compute reconstruction weights...'); if k > d tol = 1e-5; else tol = 0; end % Construct reconstruction weight matrix W = zeros(k, n); for i=1:n z = X(:,neighborhood(:,i)) - repmat(X(:,i), 1, k); % Shift point to origin C = z' * z; % Compute local covariance C = C + eye(k, k) * tol * trace(C); % Regularization of covariance (if K > D) W(:,i) = C \ ones(k, 1); % Solve linear system W(:,i) = W(:,i) / sum(W(:,i)); % Make sure that sum is 1 end % Now that we have the reconstruction weights matrix, we define the % sparse cost matrix M = (I-W)'*(I-W). M = sparse(1:n, 1:n, ones(1, n), n, n, 4 * k * n); for i=1:n w = W(:,i); j = neighborhood(:,i); M(i, j) = M(i, j) - w'; M(j, i) = M(j, i) - w; M(j, j) = M(j, j) + w * w'; end % For sparse datasets, we might end up with NaNs or Infs in M. We just set them to zero for now... M(isnan(M)) = 0; M(isinf(M)) = 0; % The embedding is computed from the bottom eigenvectors of this cost matrix disp('Compute embedding (solve eigenproblem)...'); tol = 0; if strcmp(eig_impl, 'JDQR') options.Disp = 0; options.LSolver = 'bicgstab'; [mappedX, eigenvals] = jdqr(M, no_dims + 1, tol, options); else options.disp = 0; options.isreal = 1; options.issym = 1; [mappedX, eigenvals] = eigs(M, no_dims + 1, tol, options); % only need bottom (no_dims + 1) eigenvectors end [eigenvals, ind] = sort(diag(eigenvals), 'ascend'); if size(mappedX, 2) < no_dims + 1 no_dims = size(mappedX, 2) - 1; warning(['Target dimensionality reduced to ' num2str(no_dims) '...']); end mappedX = mappedX(:,ind(2:no_dims + 1)); % throw away zero eigenvector/value
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -