⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kernel_function.m

📁 The goal of SPID is to provide the user with tools capable to simulate, preprocess, process and clas
💻 M
字号:
function y = kernel_function(v, X, center, kernel, param1, param2)%KERNEL_FUNCTION Computes sum of (K * X) where X is a possible eigenvector%%   y = kernel_function(v, X, center, kernel, param1, param2)%% The function computes the sum of the elements of (K * v), where v is a% possible eigenvector of K. This function is used to enable the use of% EIGS in Kernel PCA. The other parameters of the function are the dataset % X, the name of the kernel function (default = 'gauss'), and its % corresponding parameters in param1 and param2.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.1b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want. However, it is appreciated if you maintain the name of the original% author.%% (C) Laurens van der Maaten% Maastricht University, 2007    if ~exist('center', 'var')        center = 0;    end    % If no kernel function is specified    if nargin == 2 || strcmp(kernel, 'none')        kernel = 'linear';    end        % Construct result vector    y = zeros(1, size(X, 1));    n = size(X, 2);        switch kernel                case 'linear'            % Retrieve information for centering of K            if center                column_sum = zeros(1, n);                for i=1:n                    % Compute single row of the kernel matrix                    K = X(:,i)' * X;                    column_sum = column_sum + K;                end                % Compute centering constant over entire kernel                total_sum = ((1 / n^2) * sum(column_sum));            end                        % Compute product K*v            for i=1:n                % Compute single row of the kernel matrix                K = X(:,i)' * X;                                % Center row of the kernel matrix                if center                    K = K - ((1 / n) .* column_sum) - ((1 / n) .* column_sum(i)) + total_sum;                end                                                % Compute sum of products                y(i) = K * v;            end                    case 'poly'                        % Initialize some variables            if ~exist('param1', 'var'), param1 = 1; param2 = 3; end                                                % Retrieve information for centering of K            if center                column_sum = zeros(1, n);                for i=1:n                    % Compute row sums of the kernel matrix                    K = X(:,i)' * X;                    K = (K + param1) .^ param2;                    column_sum = column_sum + K;                end                % Compute centering constant over entire kernel                total_sum = ((1 / n^2) * sum(column_sum));            end                    % Compute product K*v            for i=1:n                % Compute row of the kernel matrix                K = X(:,i)' * X;                K = (K + param1) .^ param2;                                % Center row of the kernel matrix                if center                    K = K - ((1 / n) .* column_sum) - ((1 / n) .* column_sum(i)) + total_sum;                end                                                % Compute sum of products                y(i) = K * v;            end                    case 'gauss'                        % Initialize some variables            if ~exist('param1', 'var'), param1 = 1; end                        % Retrieve information for centering of K            if center                column_sum = zeros(1, n);                for i=1:n                    % Compute row sums of the kernel matrix                    K = L2_distance(X(:,i), X);                    K = exp(-(K.^2 / (2 * param1.^2)));                    column_sum = column_sum + K;                end                % Compute centering constant over entire kernel                total_sum = ((1 / n^2) * sum(column_sum));            end                      % Compute product K*v            for i=1:n                % Compute single row of the kernel matrix                K = L2_distance(X(:,i), X);                K = exp(-(K.^2 / param1));                                % Center row of the kernel matrix                if center                    K = K - ((1 / n) .* column_sum) - ((1 / n) .* column_sum(i)) + total_sum;                end                % Compute sum of products                y(i) = K * v;            end                    otherwise            error('Unknown kernel function.');    end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -