⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sdecca2.m

📁 The goal of SPID is to provide the user with tools capable to simulate, preprocess, process and clas
💻 M
字号:
function  [P, newY, newE, cost, c]= sdecca2(Y, snn, regularizer, relative)% doing semidefinitve embedding/MVU with output being parameterized by graph% laplacian's eigenfunctions.. %% the algorithm is same as conformal component analysis except that the scaling% factor there is set as 1%%% function [P, NY, NE, COST, C] = CDR2(X, Y, NEIGHBORS)  implements the % CONFORMAL DIMENSIONALITY REDUCTION of data X. It finds a linear map% of Y -> L*Y such that X and L*Y is related by a conformal mapping.%% No tehtat  The algorithm use the formulation of only distances.%% Input:%   Y: matrix of d'xN, with each column is a point in R^d'%   NEIGHBORS: matrix of KxN, each column is a list of indices (between 1%   and N) to the nearest-neighbor of the corresponding column in X% Output:%   P: square of the linear map L, ie, P = L'*L%   NY: transformed data point, ie, NY = L*Y;%   NE: eigenvalues of NY's covariance matrix %   COST: the value of the Conformal Dimensionality Reduction cost function%   C:  a vector of length N, the optimal scaling factor for each data%   point%% The algorithm finds L by solving a semidefinite programming problem. It% calls csdp() SDP solver by default and assumes that it is on the path.%% written by feisha@cis.upenn.edu%%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.1b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want. However, it is appreciated if you maintain the name of the original% author.%% (C) Laurens van der Maaten% Maastricht University, 2007N = size(Y,2);if exist('mexCCACollectData2') == 3    [erow, ecol,edist] = sparse_nn(snn);    irow = int32(erow); icol = int32(ecol);    [A,B, g] = mexCCACollectData2(Y, irow, icol, edist, int32(relative));%    [A2,B2, g2] = mexCCACollectData(X,Y, irow, icol, int32(relative));else    error('Make sure you have run MEXALL before attempting to use this technique.');endBG = 2*sum(B,2);Q = A ;[V, E] = eig(Q+eye(size(Q))); % adding an identity matrix to Q for numericalE = E-eye(size(Q));           % stabilityE(E<0) = 0;if ~isreal(diag(E))    warning('The matrix is not positive definite. It is being made positive definite now...');    E=real(E);    V = real(V);    S = sqrt(E)*V';else    S = sqrt(E)*V';end%clear Q;% put the regularizer in thereBG = BG + regularizer*reshape(eye(size(Y,1)), size(Y,1)^2,1);% formulate the SDP problem[AA, bb, cc] = formulateSDP(S, size(Y,1), BG);sizeSDP = size(Y,1)^2+1 + size(Y,1);pars.s = sizeSDP;opts.printlevel = 1;% solve it via csdp[xx, yy, zz, info] = csdp(AA, bb, cc, pars,opts);% the negate of yy is our solutionyy = -yy;idx = 0;P = zeros(size(Y,1));for col=1:size(Y,1)    for row = col:size(Y,1)        idx=idx+1;        P(row, col) = yy(idx);    endend% convert P to a positive definite matrixP = P+P' - diag(diag(P));% transform the original projection to the new[V, E] = eig(P);E(E<0) = 0; % make sure there is no very small negative eigenvalueL = diag(sqrt(diag(E))) * V';newY = L*Y;% eigenvalue of the new projection, doing PCA using covariance matrix% because the dimension of newY or Y is definitely less than the number of% points[newV, newE] = eig(newY *newY');newE = diag(newE);[dummy, idx] = sort(newE);newE = newE(idx(end:-1:1));newY = newV'*newY;newY = newY(idx(end:-1:1),:);cost = P(:)'*Q*P(:);%c = spdiags(1./sqrt(g),0, length(g),length(g))*B'*P(:);c=[];return;function [A, b, c]=formulateSDP(S, D, bb)[F0, FI, c] = localformulateSDP(S, D, bb);[A, b, c] = sdpToSeDuMi(F0, FI, c);returnfunction [F0, FI, c] = localformulateSDP(S, D, b)% formulate SDP problem% each FI that corresponds to the LMI for the quadratic cost function has% precisely 2*D^2 nonzero elements. But we need only D^2 storage for% indexing these elements since the FI are symmetrictempFidx = zeros(D^2, 3);dimF = (D^2+1) + D;idx= 0;for col=1:D    for row=col:D        idx = idx+1;        lindx1 = sub2ind([D D], row, col);        lindx2 = sub2ind([D D], col, row);        tempFidx(:,1) = [1:D^2]';        tempFidx(:,2) = D^2+1;        if col==row            tempFidx(:,3) = S(:, lindx1) ;            FI{idx} = sparse([tempFidx(:,1); ...  % for cost function                                tempFidx(:,2); ... % symmetric                                row+D^2+1 ... % for P being p.s.d                                                          ], ...                            [tempFidx(:,2); ...  % for cost function                                tempFidx(:,1); ... % symmetric                                row+D^2+1; ... % for P being p.s.d                                                           ],...                            [tempFidx(:,3); ... % for cost function                                tempFidx(:,3); ... % symmetric                                1;                  % for P being p.s.d                                                           ], dimF, dimF);        else                        tempFidx(:,3) = S(:, lindx1) + S(:, lindx2);            FI{idx} = sparse([tempFidx(:,1); ...  % for cost function                                tempFidx(:,2); ... % symmetric                                row+D^2+1; ... % for P being p.s.d                                col+D^2+1; ... % symmetric                            ], ...                            [tempFidx(:,2); ...  % for cost function                                tempFidx(:,1); ... % symmetric                                col+D^2+1; ... % for P being p.s.d                                row+D^2+1; ... % being symmetric                            ],...                            [tempFidx(:,3); ... % for cost function                                tempFidx(:,3); ... % symmetric                                1;                  % for P being p.s.d                                1;                  % symmetric                            ], dimF, dimF);                    end    endendidx=idx+1;% for the F matrix corresponding to tFI{idx} = sparse(D^2+1, D^2+1, 1, dimF, dimF);% now for F0F0 = sparse( [[1:D^2]], [[1:D^2]], [ones(1, D^2)], dimF, dimF);% now for cb = reshape(-b, D, D);b = b*2 - diag(diag(b)); c = zeros(idx-1,1);kdx=0;%keyboard;for col=1:D    for row=col:D      kdx = kdx+1;      c(kdx) = b(row, col);    endend%keyboard;c = [c; 1]; % remember: we use only half of Preturn;        function [A, b, c] = sdpToSeDuMi(F0, FI, cc)% convert the canonical SDP dual formulation:% (see  Vandenberche and Boyd 1996, SIAM Review)%  max -Tr(F0 Z)% s.t. Tr(Fi Z) = cci and Z is positive definite%% in which cc = (cc1, cc2, cc3,..) and FI = {F1, F2, F3,...}% % to SeDuMi format (formulated as vector decision variables ):% min c'x% s.t. Ax = b and x is positive definite (x is a vector, so SeDuMi% really means that vec2mat(x) is positive definite)%% by feisha@cis.upenn.edu, June, 10, 2004if nargin < 3    error('Cannot convert SDP formulation to SeDuMi formulation in sdpToSeDumi!');end[m, n] = size(F0);if m ~= n    error('F0 matrix must be squared matrix in sdpToSeDumi(F0, FI, b)');endp = length(cc);if p ~= length(FI)    error('FI matrix cellarray must have the same length as b in sdpToSeDumi(F0,FI,b)');end% should check every element in the cell array FI...later..% x = reshape(Z, n*n, 1);  % optimization variables from matrix to vector% converting objective function of the canonical SDPc = reshape(F0', n*n,1);% converting equality constraints of the canonical SDPzz= 0;for idx=1:length(FI)    zz= zz + nnz(FI{idx});endA = spalloc( n*n, p, zz);for idx = 1:p    temp = reshape(FI{idx}, n*n,1);    lst = find(temp~=0);    A(lst, idx) = temp(lst);end% The SeDuMi solver actually expects the transpose of A as in following% dual problem% max b'y% s.t. c - A'y is positive definite% Therefore, we transpose A% A = A';% b doesn't need to be changedb = cc;return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -