📄 pca.m
字号:
function [mappedX, mapping] = pca(X, no_dims)%KERNEL_PCA Perform the kernel PCA algorithm%% [mappedX, mapping] = pca(X, no_dims)%% The function runs PCA on a set of datapoints X. The variable% no_dims sets the number of dimensions of the feature points in the % embedded feature space (no_dims >= 1, default = 2). % For no_dims, you can also specify a number between 0 and 1, determining % the amount of variance you want to retain in the PCA step.% The function returns the locations of the embedded trainingdata in % mappedX. Furthermore, it returns information on the mapping in mapping.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.1b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want. However, it is appreciated if you maintain the name of the original% author.%% (C) Laurens van der Maaten% Maastricht University, 2007 if ~exist('no_dims', 'var') no_dims = 2; end % Make sure data is zero mean X = X - repmat(mean(X, 1), [size(X, 1) 1]); % Compute covariance matrix C = cov(X); % Perform eigendecomposition of C C(isnan(C)) = 0; C(isinf(C)) = 0; [M, lambda] = eig(C); % Sort eigenvectors in descending order [lambda, ind] = sort(diag(lambda), 'descend'); lambda = lambda(ind); M = M(:,ind(1:no_dims)); % Apply mapping on the data mappedX = X * M; % Store information for out-of-sample extension mapping.M = M;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -