⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pca.m

📁 The goal of SPID is to provide the user with tools capable to simulate, preprocess, process and clas
💻 M
字号:
function [mappedX, mapping] = pca(X, no_dims)%KERNEL_PCA Perform the kernel PCA algorithm%%   [mappedX, mapping] = pca(X, no_dims)%% The function runs PCA on a set of datapoints X. The variable% no_dims sets the number of dimensions of the feature points in the % embedded feature space (no_dims >= 1, default = 2). % For no_dims, you can also specify a number between 0 and 1, determining % the amount of variance you want to retain in the PCA step.% The function returns the locations of the embedded trainingdata in % mappedX. Furthermore, it returns information on the mapping in mapping.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.1b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want. However, it is appreciated if you maintain the name of the original% author.%% (C) Laurens van der Maaten% Maastricht University, 2007    if ~exist('no_dims', 'var')        no_dims = 2;    end		% Make sure data is zero mean	X = X - repmat(mean(X, 1), [size(X, 1) 1]);	% Compute covariance matrix	C = cov(X);		% Perform eigendecomposition of C	C(isnan(C)) = 0;	C(isinf(C)) = 0;    [M, lambda] = eig(C);        % Sort eigenvectors in descending order    [lambda, ind] = sort(diag(lambda), 'descend');	lambda = lambda(ind);	M = M(:,ind(1:no_dims));		% Apply mapping on the data	mappedX = X * M;	    % Store information for out-of-sample extension    mapping.M = M;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -