📄 lssvcb_predict.m
字号:
function [Y_class, Y_probp, ytst0, varztstp, varztstn] = lssvcB_predict(X_test, model, prior)
% function [Y_class, Y_probp, ytst0, varztstp, varztstn] = lssvcB_predict(X_test, model, prior)
% Make classification predictions with the LSSVM Bayesian classifier.
% Input:
% X_test: Test data matrix of dim (num test examples, num features) (without standardization).
% model : Classifier.
% prior : [pin, pip], vector with prior class probability for class - and - respectively,
% default are the proptions of the - and + samples in the training set
%
% Return:
% Y_class: +-1 predictions on the test data of dim (num test example).
% Y_probp: Posterior probability for class +.
% ytst0: the latent output
% varztstp: the samplewise variance associated with the output w.r.t class +
% varztstn: the samplewise variance associated with the output w.r.t. class -
% Jan 2006 -- chuanl@gmail.com
if model.needstd
nv = size(X_test, 2);
for i=1:nv
X_test(:,i)=(X_test(:,i)-model.meanp(i))/model.stdp(i);
end,
end
lssvcB=model; clear model;
[ytst0, varztstp, varztstn] = lssvcBout(X_test, lssvcB);
zmp=lssvcB.zmp; zmn=lssvcB.zmn; zetap=lssvcB.zetap; zetan=lssvcB.zetan;
if exist('prior')
if length(prior)>1
pin=prior(1); pip=prior(2);
else
prpn=prior;
pip=prpn/(1+prpn); pin=1/(1+prpn);
end
else
pin=lssvcB.pin; pip=lssvcB.pip;
end
[classtst, Pyptst, Pyntst] = lssvcBclass(ytst0, zmp, zmn, varztstp, varztstn, zetap, zetan, pip, pin);
Y_score=Pyptst-0.5;
Y_class=sign(Y_score);
Y_probp=Pyptst;
return,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -