📄 lssvcbay_train.m
字号:
function [param, idx_out]=lssvcBay_train(X_train, Y_train, idx_in, varargin)
%function [param, idx_out]=lssvcBay_train(X_train, Y_train, idx_in, varargin)
% Inputs:
% X_train -- Training data matrix of dim (num examples, num features).
% Y_train -- Training output matrix of dim (num examples, 1).
% idx_in -- Indices of the subset of features selected by preprocessing
% (e.g. [1: size(X_train,2)].)
% varargin -- related parameter settings for lssvm Bayesian training
% - e.g. {'kernelType', 'rbf', 'maxsteps', -1}
% Returns:
% param -- a structure with two elements
% idx_out -- Indices of the subset of features effectively
% used/selected by training
% (not needed in this case, as no variable selection is needed).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X=X_train(:,idx_in); t=Y_train;
if ~exist('idx_in'), idx_in=1:size(X,2); end;
iniSig=[]; iniMu=1; iniZeta=1; maxsteps=-1;
kernelType='lin';
if nargin>=4
if length(varargin)==1,
args=varargin{1};
else
args = varargin;
end
nargs = length(args);
if isstr(args{1})
for i=1:2:nargs
switch args{i},
case 'kernelType', kernelType=args{i+1};
case 'maxsteps', maxsteps=args{i+1};
case 'sigs', iniSig=args{i+1};
otherwise,
error(['invalid argument name ' args{i}]);
end %switch
end %for
end %if
end %if nargin
[lssvcB, zmp, zmn, varztrnp, varztrnn ytrn0, zetanew, zetap, zetan alpha, b, sig,gam] = ...
lssvcmodoutb2_train(X, t, iniMu, iniZeta, kernelType, iniSig, maxsteps, 0);
param=lssvcB;
idx_out=idx_in;
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -