📄 rf_layout.h
字号:
void (*MapSector)(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t *row, RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap); /* routine to map RAID sector address -> physical (r,c,o) of parity unit */ void (*MapParity)(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t *row, RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap); /* routine to map RAID sector address -> physical (r,c,o) of Q unit */ void (*MapQ)(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t *row, RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap); /* routine to identify the disks comprising a stripe */ void (*IdentifyStripe)(RF_Raid_t *raidPtr, RF_RaidAddr_t addr, RF_RowCol_t **diskids, RF_RowCol_t *outRow); /* routine to select a dag */ void (*SelectionFunc)(RF_Raid_t *raidPtr, RF_IoType_t type, RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc); /* map a stripe ID to a parity stripe ID. This is typically the identity mapping */ void (*MapSIDToPSID)(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID, RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru); /* get default head separation limit (may be NULL) */ RF_HeadSepLimit_t (*GetDefaultHeadSepLimit)(RF_Raid_t *raidPtr); /* get default num recon buffers (may be NULL) */ int (*GetDefaultNumFloatingReconBuffers)(RF_Raid_t *raidPtr); /* get number of spare recon units (may be NULL) */ RF_ReconUnitCount_t (*GetNumSpareRUs)(RF_Raid_t *raidPtr); /* spare table installation (may be NULL) */ int (*InstallSpareTable)(RF_Raid_t *raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol); /* recon buffer submission function */ int (*SubmitReconBuffer)(RF_ReconBuffer_t *rbuf, int keep_it, int use_committed); /* * verify that parity information for a stripe is correct * see rf_parityscan.h for return vals */ int (*VerifyParity)(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr, RF_PhysDiskAddr_t *parityPDA, int correct_it, RF_RaidAccessFlags_t flags); /* number of faults tolerated by this mapping */ int faultsTolerated; /* states to step through in an access. Must end with "LastState". * The default is DefaultStates in rf_layout.c */ RF_AccessState_t *states; RF_AccessStripeMapFlags_t flags;#endif /* RF_UTILITY == 0 */} RF_LayoutSW_t;/* enables remapping to spare location under dist sparing */#define RF_REMAP 1#define RF_DONT_REMAP 0/* * Flags values for RF_AccessStripeMapFlags_t */#define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */#define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs that support it */#define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs *//************************************************************************* * * this structure forms the layout component of the main Raid * structure. It describes everything needed to define and perform * the mapping of logical RAID addresses <-> physical disk addresses. * *************************************************************************/struct RF_RaidLayout_s { /* configuration parameters */ RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one stripe unit */ RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */ RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction unit */ /* redundant-but-useful info computed from the above, used in all layouts */ RF_StripeCount_t numStripe; /* total number of stripes in the array */ RF_SectorCount_t dataSectorsPerStripe; RF_StripeCount_t dataStripeUnitsPerDisk; u_int bytesPerStripeUnit; u_int dataBytesPerStripe; RF_StripeCount_t numDataCol; /* number of SUs of data per stripe (name here is a la RAID4) */ RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe. Always 1 for now */ RF_StripeCount_t numParityLogCol; /* number of SUs of parity log per stripe. Always 1 for now */ RF_StripeCount_t stripeUnitsPerDisk; RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and information */ void *layoutSpecificInfo; /* ptr to a structure holding layout-specific params */};/***************************************************************************************** * * The mapping code returns a pointer to a list of AccessStripeMap structures, which * describes all the mapping information about an access. The list contains one * AccessStripeMap structure per stripe touched by the access. Each element in the list * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each * element in this latter list describes the physical location of a stripe unit accessed * within the corresponding stripe. * ****************************************************************************************/#define RF_PDA_TYPE_DATA 0#define RF_PDA_TYPE_PARITY 1#define RF_PDA_TYPE_Q 2struct RF_PhysDiskAddr_s { RF_RowCol_t row,col; /* disk identifier */ RF_SectorNum_t startSector; /* sector offset into the disk */ RF_SectorCount_t numSector; /* number of sectors accessed */ int type; /* used by higher levels: currently, data, parity, or q */ caddr_t bufPtr; /* pointer to buffer supplying/receiving data */ RF_RaidAddr_t raidAddress; /* raid address corresponding to this physical disk address */ RF_PhysDiskAddr_t *next;};struct RF_AccessStripeMap_s { RF_StripeNum_t stripeID; /* the stripe index */ RF_RaidAddr_t raidAddress; /* the starting raid address within this stripe */ RF_RaidAddr_t endRaidAddress; /* raid address one sector past the end of the access */ RF_SectorCount_t totalSectorsAccessed; /* total num sectors identified in physInfo list */ RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in physInfo list */ int numDataFailed; /* number of failed data disks accessed */ int numParityFailed; /* number of failed parity disks accessed (0 or 1) */ int numQFailed; /* number of failed Q units accessed (0 or 1) */ RF_AccessStripeMapFlags_t flags; /* various flags */ RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */ RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA that has failed, if any */ RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */ RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the parity (P of P + Q ) */ RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of P + Q */ RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */ RF_RowCol_t origRow; /* the original row: we may redirect the acc to a different row */ RF_AccessStripeMap_t *next;};/* flag values */#define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation code to redirect failed accs */#define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect recursive calls to the bailout write dag */#define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on the first parity range in this parity stripe */#define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on the 2nd parity range in this parity stripe */#define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon call on this parity stripe */#define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must unblock it later */struct RF_AccessStripeMapHeader_s { RF_StripeCount_t numStripes; /* total number of stripes touched by this acc */ RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map. Also used for making lists */ RF_AccessStripeMapHeader_t *next;};/***************************************************************************************** * * various routines mapping addresses in the RAID address space. These work across * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE. * ****************************************************************************************//* return the identifier of the stripe containing the given address */#define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \ ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )/* return the raid address of the start of the indicates stripe ID */#define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \ ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )/* return the identifier of the stripe containing the given stripe unit id */#define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \ ( (_addr_) / (_layoutPtr_)->numDataCol )/* return the identifier of the stripe unit containing the given address */#define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \ ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )/* return the RAID address of next stripe boundary beyond the given address */#define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )/* return the RAID address of the start of the stripe containing the given address */#define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )/* return the RAID address of next stripe unit boundary beyond the given address */#define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )/* return the RAID address of the start of the stripe unit containing RAID address _addr_ */#define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )/* returns the offset into the stripe. used by RaidAddressStripeAligned */#define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \ ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )/* returns the offset into the stripe unit. */#define rf_StripeUnitOffset(_layoutPtr_, _addr_) \ ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )/* returns nonzero if the given RAID address is stripe-aligned */#define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \ ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )/* returns nonzero if the given address is stripe-unit aligned */#define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \ ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )/* convert an address expressed in RAID blocks to/from an addr expressed in bytes */#define rf_RaidAddressToByte(_raidPtr_, _addr_) \ ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )#define rf_ByteToRaidAddress(_raidPtr_, _addr_) \ ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )/* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy, * since we're asking for the address of the first sector in the parity stripe. Conversion to a * parity stripe ID is more complex, since stripes are not contiguously allocated in * parity stripes. */#define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \ rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )#define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \ ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);int rf_ConfigureLayout(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, RF_Config_t *cfgPtr);RF_StripeNum_t rf_MapStripeIDToParityStripeID(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID, RF_ReconUnitNum_t *which_ru);#endif /* !_RF__RF_LAYOUT_H_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -