📄 rf_dagdegwr.c
字号:
i = 0; blockNode = &nodes[i]; i += 1; commitNode = &nodes[i]; i += 1; unblockNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; xorNode = &nodes[i]; i += 1; wnpNode = &nodes[i]; i += 1; wndNodes = &nodes[i]; i += nWndNodes; rrdNodes = &nodes[i]; i += nRrdNodes; if (nfaults == 2) { wnqNode = &nodes[i]; i += 1; } else { wnqNode = NULL; } RF_ASSERT(i == nNodes); /* this dag can not commit until all rrd and xor Nodes have completed */ dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; RF_ASSERT( nRrdNodes > 0 ); rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nRrdNodes, 2*nXorBufs+2, nfaults, dag_h, "Xrc", allocList); /* * Fill in the Rrd nodes. If any of the rrd buffers are the same size as * the failed buffer, save a pointer to it so we can use it as the target * of the XOR. The pdas in the rrd nodes have been range-restricted, so if * a buffer is the same size as the failed buffer, it must also be at the * same alignment within the SU. */ i = 0; if (new_asm_h[0]) { for (i=0, pda=new_asm_h[0]->stripeMap->physInfo; i<new_asm_h[0]->stripeMap->numStripeUnitsAccessed; i++, pda=pda->next) { rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); RF_ASSERT(pda); rrdNodes[i].params[0].p = pda; rrdNodes[i].params[1].p = pda->bufPtr; rrdNodes[i].params[2].v = parityStripeID; rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); } } /* i now equals the number of stripe units accessed in new_asm_h[0] */ if (new_asm_h[1]) { for (j=0,pda=new_asm_h[1]->stripeMap->physInfo; j<new_asm_h[1]->stripeMap->numStripeUnitsAccessed; j++, pda=pda->next) { rf_InitNode(&rrdNodes[i+j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); RF_ASSERT(pda); rrdNodes[i+j].params[0].p = pda; rrdNodes[i+j].params[1].p = pda->bufPtr; rrdNodes[i+j].params[2].v = parityStripeID; rrdNodes[i+j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); if (allowBufferRecycle && (pda->numSector == failedPDA->numSector)) xorTargetBuf = pda->bufPtr; } } if (rdnodesFaked) { /* * This is where we'll init that fake noop read node * (XXX should the wakeup func be different?) */ rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 0, 0, dag_h, "RrN", allocList); } /* * Make a PDA for the parity unit. The parity PDA should start at * the same offset into the SU as the failed PDA. */ /* * Danner comment: * I don't think this copy is really necessary. * We are in one of two cases here. * (1) The entire failed unit is written. Then asmap->parityInfo will * describe the entire parity. * (2) We are only writing a subset of the failed unit and nothing * else. Then the asmap->parityInfo describes the failed unit and * the copy can also be avoided. */ RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); parityPDA->row = asmap->parityInfo->row; parityPDA->col = asmap->parityInfo->col; parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); parityPDA->numSector = failedPDA->numSector; if (!xorTargetBuf) { RF_CallocAndAdd(xorTargetBuf, 1, rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); } /* init the Wnp node */ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); wnpNode->params[0].p = parityPDA; wnpNode->params[1].p = xorTargetBuf; wnpNode->params[2].v = parityStripeID; wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); /* fill in the Wnq Node */ if (nfaults == 2) { { RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); parityPDA->row = asmap->qInfo->row; parityPDA->col = asmap->qInfo->col; parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU) * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); parityPDA->numSector = failedPDA->numSector; rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); wnqNode->params[0].p = parityPDA; RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); wnqNode->params[1].p = xorNode->results[1]; wnqNode->params[2].v = parityStripeID; wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); } } /* fill in the Wnd nodes */ for (pda=asmap->physInfo, i=0; i<nWndNodes; i++, pda=pda->next) { if (pda == failedPDA) { i--; continue; } rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); RF_ASSERT(pda); wndNodes[i].params[0].p = pda; wndNodes[i].params[1].p = pda->bufPtr; wndNodes[i].params[2].v = parityStripeID; wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); } /* fill in the results of the xor node */ xorNode->results[0] = xorTargetBuf; /* fill in the params of the xor node */ paramNum=0; if (rdnodesFaked == 0) { for (i=0; i<nRrdNodes; i++) { /* all the Rrd nodes need to be xored together */ xorNode->params[paramNum++] = rrdNodes[i].params[0]; xorNode->params[paramNum++] = rrdNodes[i].params[1]; } } for (i=0; i < nWndNodes; i++) { /* any Wnd nodes that overlap the failed access need to be xored in */ if (overlappingPDAs[i]) { RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); bcopy((char *)wndNodes[i].params[0].p, (char *)pda, sizeof(RF_PhysDiskAddr_t)); rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); xorNode->params[paramNum++].p = pda; xorNode->params[paramNum++].p = pda->bufPtr; } } RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char)); /* * Install the failed PDA into the xor param list so that the * new data gets xor'd in. */ xorNode->params[paramNum++].p = failedPDA; xorNode->params[paramNum++].p = failedPDA->bufPtr; /* * The last 2 params to the recovery xor node are always the failed * PDA and the raidPtr. install the failedPDA even though we have just * done so above. This allows us to use the same XOR function for both * degraded reads and degraded writes. */ xorNode->params[paramNum++].p = failedPDA; xorNode->params[paramNum++].p = raidPtr; RF_ASSERT( paramNum == 2*nXorBufs+2 ); /* * Code to link nodes begins here */ /* link header to block node */ RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; /* link block node to rd nodes */ RF_ASSERT(blockNode->numSuccedents == nRrdNodes); for (i = 0; i < nRrdNodes; i++) { RF_ASSERT(rrdNodes[i].numAntecedents == 1); blockNode->succedents[i] = &rrdNodes[i]; rrdNodes[i].antecedents[0] = blockNode; rrdNodes[i].antType[0] = rf_control; } /* link read nodes to xor node*/ RF_ASSERT(xorNode->numAntecedents == nRrdNodes); for (i = 0; i < nRrdNodes; i++) { RF_ASSERT(rrdNodes[i].numSuccedents == 1); rrdNodes[i].succedents[0] = xorNode; xorNode->antecedents[i] = &rrdNodes[i]; xorNode->antType[i] = rf_trueData; } /* link xor node to commit node */ RF_ASSERT(xorNode->numSuccedents == 1); RF_ASSERT(commitNode->numAntecedents == 1); xorNode->succedents[0] = commitNode; commitNode->antecedents[0] = xorNode; commitNode->antType[0] = rf_control; /* link commit node to wnd nodes */ RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes[i].numAntecedents == 1); commitNode->succedents[i] = &wndNodes[i]; wndNodes[i].antecedents[0] = commitNode; wndNodes[i].antType[0] = rf_control; } /* link the commit node to wnp, wnq nodes */ RF_ASSERT(wnpNode->numAntecedents == 1); commitNode->succedents[nWndNodes] = wnpNode; wnpNode->antecedents[0] = commitNode; wnpNode->antType[0] = rf_control; if (nfaults == 2) { RF_ASSERT(wnqNode->numAntecedents == 1); commitNode->succedents[nWndNodes + 1] = wnqNode; wnqNode->antecedents[0] = commitNode; wnqNode->antType[0] = rf_control; } /* link write new data nodes to unblock node */ RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults)); for(i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes[i].numSuccedents == 1); wndNodes[i].succedents[0] = unblockNode; unblockNode->antecedents[i] = &wndNodes[i]; unblockNode->antType[i] = rf_control; } /* link write new parity node to unblock node */ RF_ASSERT(wnpNode->numSuccedents == 1); wnpNode->succedents[0] = unblockNode; unblockNode->antecedents[nWndNodes] = wnpNode; unblockNode->antType[nWndNodes] = rf_control; /* link write new q node to unblock node */ if (nfaults == 2) { RF_ASSERT(wnqNode->numSuccedents == 1); wnqNode->succedents[0] = unblockNode; unblockNode->antecedents[nWndNodes+1] = wnqNode; unblockNode->antType[nWndNodes+1] = rf_control; } /* link unblock node to term node */ RF_ASSERT(unblockNode->numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == 1); RF_ASSERT(termNode->numSuccedents == 0); unblockNode->succedents[0] = termNode; termNode->antecedents[0] = unblockNode; termNode->antType[0] = rf_control;}#define CONS_PDA(if,start,num) \ pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \ pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \ pda_p->numSector = num; \ pda_p->next = NULL; \ RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)void rf_WriteGenerateFailedAccessASMs( RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_PhysDiskAddr_t **pdap, int *nNodep, RF_PhysDiskAddr_t **pqpdap, int *nPQNodep, RF_AllocListElem_t *allocList){ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); int PDAPerDisk,i; RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; int numDataCol = layoutPtr->numDataCol; int state; unsigned napdas; RF_SectorNum_t fone_start, fone_end, ftwo_start, ftwo_end; RF_PhysDiskAddr_t *fone = asmap->failedPDA, *ftwo = asmap->failedPDAtwo; RF_PhysDiskAddr_t *pda_p; RF_RaidAddr_t sosAddr; /* determine how many pda's we will have to generate per unaccess stripe. If there is only one failed data unit, it is one; if two, possibly two, depending wether they overlap. */ fone_start = rf_StripeUnitOffset(layoutPtr,fone->startSector); fone_end = fone_start + fone->numSector; if (asmap->numDataFailed==1) { PDAPerDisk = 1; state = 1; RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList); pda_p = *pqpdap;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -