📄 rf_dagffwr.c
字号:
NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); } rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList); /* initialize the Rod nodes */ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { if (new_asm_h[asmNum]) { pda = new_asm_h[asmNum]->stripeMap->physInfo; while (pda) { rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList); rodNodes[nodeNum].params[0].p = pda; rodNodes[nodeNum].params[1].p = pda->bufPtr; rodNodes[nodeNum].params[2].v = parityStripeID; rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); nodeNum++; pda = pda->next; } } } RF_ASSERT(nodeNum == nRodNodes); /* initialize the wnd nodes */ pda = asmap->physInfo; for (i=0; i < nWndNodes; i++) { rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); RF_ASSERT(pda != NULL); wndNodes[i].params[0].p = pda; wndNodes[i].params[1].p = pda->bufPtr; wndNodes[i].params[2].v = parityStripeID; wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); pda = pda->next; } /* initialize the redundancy node */ if (nRodNodes > 0) { rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nRodNodes, 2 * (nWndNodes+nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); } else { rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes+nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); } xorNode->flags |= RF_DAGNODE_FLAG_YIELD; for (i=0; i < nWndNodes; i++) { xorNode->params[2*i+0] = wndNodes[i].params[0]; /* pda */ xorNode->params[2*i+1] = wndNodes[i].params[1]; /* buf ptr */ } for (i=0; i < nRodNodes; i++) { xorNode->params[2*(nWndNodes+i)+0] = rodNodes[i].params[0]; /* pda */ xorNode->params[2*(nWndNodes+i)+1] = rodNodes[i].params[1]; /* buf ptr */ } /* xor node needs to get at RAID information */ xorNode->params[2*(nWndNodes+nRodNodes)].p = raidPtr; /* * Look for an Rod node that reads a complete SU. If none, alloc a buffer * to receive the parity info. Note that we can't use a new data buffer * because it will not have gotten written when the xor occurs. */ if (allowBufferRecycle) { for (i = 0; i < nRodNodes; i++) { if (((RF_PhysDiskAddr_t *)rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit) break; } } if ((!allowBufferRecycle) || (i == nRodNodes)) { RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); } else { xorNode->results[0] = rodNodes[i].params[1].p; } /* initialize the Wnp node */ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); wnpNode->params[0].p = asmap->parityInfo; wnpNode->params[1].p = xorNode->results[0]; wnpNode->params[2].v = parityStripeID; wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); /* parityInfo must describe entire parity unit */ RF_ASSERT(asmap->parityInfo->next == NULL); if (nfaults == 2) { /* * We never try to recycle a buffer for the Q calcuation * in addition to the parity. This would cause two buffers * to get smashed during the P and Q calculation, guaranteeing * one would be wrong. */ RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *),allocList); rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); wnqNode->params[0].p = asmap->qInfo; wnqNode->params[1].p = xorNode->results[1]; wnqNode->params[2].v = parityStripeID; wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); /* parityInfo must describe entire parity unit */ RF_ASSERT(asmap->parityInfo->next == NULL); } /* * Connect nodes to form graph. */ /* connect dag header to block node */ RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; if (nRodNodes > 0) { /* connect the block node to the Rod nodes */ RF_ASSERT(blockNode->numSuccedents == nRodNodes); RF_ASSERT(xorNode->numAntecedents == nRodNodes); for (i = 0; i < nRodNodes; i++) { RF_ASSERT(rodNodes[i].numAntecedents == 1); blockNode->succedents[i] = &rodNodes[i]; rodNodes[i].antecedents[0] = blockNode; rodNodes[i].antType[0] = rf_control; /* connect the Rod nodes to the Xor node */ RF_ASSERT(rodNodes[i].numSuccedents == 1); rodNodes[i].succedents[0] = xorNode; xorNode->antecedents[i] = &rodNodes[i]; xorNode->antType[i] = rf_trueData; } } else { /* connect the block node to the Xor node */ RF_ASSERT(blockNode->numSuccedents == 1); RF_ASSERT(xorNode->numAntecedents == 1); blockNode->succedents[0] = xorNode; xorNode->antecedents[0] = blockNode; xorNode->antType[0] = rf_control; } /* connect the xor node to the commit node */ RF_ASSERT(xorNode->numSuccedents == 1); RF_ASSERT(commitNode->numAntecedents == 1); xorNode->succedents[0] = commitNode; commitNode->antecedents[0] = xorNode; commitNode->antType[0] = rf_control; /* connect the commit node to the write nodes */ RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numAntecedents == 1); commitNode->succedents[i] = &wndNodes[i]; wndNodes[i].antecedents[0] = commitNode; wndNodes[i].antType[0] = rf_control; } RF_ASSERT(wnpNode->numAntecedents == 1); commitNode->succedents[nWndNodes] = wnpNode; wnpNode->antecedents[0]= commitNode; wnpNode->antType[0] = rf_trueData; if (nfaults == 2) { RF_ASSERT(wnqNode->numAntecedents == 1); commitNode->succedents[nWndNodes + 1] = wnqNode; wnqNode->antecedents[0] = commitNode; wnqNode->antType[0] = rf_trueData; } /* connect the write nodes to the term node */ RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults); RF_ASSERT(termNode->numSuccedents == 0); for (i = 0; i < nWndNodes; i++) { RF_ASSERT(wndNodes->numSuccedents == 1); wndNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &wndNodes[i]; termNode->antType[i] = rf_control; } RF_ASSERT(wnpNode->numSuccedents == 1); wnpNode->succedents[0] = termNode; termNode->antecedents[nWndNodes] = wnpNode; termNode->antType[nWndNodes] = rf_control; if (nfaults == 2) { RF_ASSERT(wnqNode->numSuccedents == 1); wnqNode->succedents[0] = termNode; termNode->antecedents[nWndNodes + 1] = wnqNode; termNode->antType[nWndNodes + 1] = rf_control; }}/****************************************************************************** * * creates a DAG to perform a small-write operation (either raid 5 or pq), * which is as follows: * * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm * \- Rod X / \----> Wnd [Und]-/ * [\- Rod X / \---> Wnd [Und]-/] * [\- Roq -> Q / \--> Wnq [Unq]-/] * * Rop = read old parity * Rod = read old data * Roq = read old "q" * Cmt = commit node * Und = unlock data disk * Unp = unlock parity disk * Unq = unlock q disk * Wnp = write new parity * Wnd = write new data * Wnq = write new "q" * [ ] denotes optional segments in the graph * * Parameters: raidPtr - description of the physical array * asmap - logical & physical addresses for this access * bp - buffer ptr (holds write data) * flags - general flags (e.g. disk locking) * allocList - list of memory allocated in DAG creation * pfuncs - list of parity generating functions * qfuncs - list of q generating functions * * A null qfuncs indicates single fault tolerant *****************************************************************************/void rf_CommonCreateSmallWriteDAG( RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList, RF_RedFuncs_t *pfuncs, RF_RedFuncs_t *qfuncs){ RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode; RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes; RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes; RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes; int i, j, nNodes, totalNumNodes, lu_flag; RF_ReconUnitNum_t which_ru; int (*func)(), (*undoFunc)(), (*qfunc)(); int numDataNodes, numParityNodes; RF_StripeNum_t parityStripeID; RF_PhysDiskAddr_t *pda; char *name, *qname; long nfaults; nfaults = qfuncs ? 2 : 1; lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); pda = asmap->physInfo; numDataNodes = asmap->numStripeUnitsAccessed; numParityNodes = (asmap->parityInfo->next) ? 2 : 1; if (rf_dagDebug) { printf("[Creating small-write DAG]\n"); } RF_ASSERT(numDataNodes > 0); dag_h->creator = "SmallWriteDAG"; dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* * DAG creation occurs in four steps: * 1. count the number of nodes in the DAG * 2. create the nodes * 3. initialize the nodes * 4. connect the nodes */ /* * Step 1. compute number of nodes in the graph */ /* number of nodes: * a read and write for each data unit * a redundancy computation node for each parity node (nfaults * nparity) * a read and write for each parity unit * a block and commit node (2) * a terminate node * if atomic RMW * an unlock node for each data unit, redundancy unit */ totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 3; if (lu_flag) { totalNumNodes += (numDataNodes + (nfaults * numParityNodes)); } /* * Step 2. create the nodes */ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; blockNode = &nodes[i]; i += 1; commitNode = &nodes[i]; i += 1; readDataNodes = &nodes[i]; i += numDataNodes; readParityNodes = &nodes[i]; i += numParityNodes; writeDataNodes = &nodes[i]; i += numDataNodes; writeParityNodes = &nodes[i]; i += numParityNodes; xorNodes = &nodes[i]; i += numParityNodes; termNode = &nodes[i]; i += 1; if (lu_flag) { unlockDataNodes = &nodes[i]; i += numDataNodes; unlockParityNodes = &nodes[i]; i += numParityNodes; } else { unlockDataNodes = unlockParityNodes = NULL; } if (nfaults == 2) { readQNodes = &nodes[i]; i += numParityNodes; writeQNodes = &nodes[i]; i += numParityNodes; qNodes = &nodes[i]; i += numParityNodes; if (lu_flag) { unlockQNodes = &nodes[i]; i += numParityNodes; } else { unlockQNodes = NULL; } } else { readQNodes = writeQNodes = qNodes = unlockQNodes = NULL; } RF_ASSERT(i == totalNumNodes); /* * Step 3. initialize the nodes */ /* initialize block node (Nil) */ nNodes = numDataNodes + (nfaults * numParityNodes); rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); /* initialize commit node (Cmt) */ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList); /* initialize terminate node (Trm) */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -