⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rf_parityscan.c

📁 RAIDFrame是个非常好的磁盘阵列RAID仿真工具
💻 C
📖 第 1 页 / 共 2 页
字号:
     */    return(RF_PARITY_OKAY);  }  rc = RF_PARITY_OKAY;  if (lp->VerifyParity) {    for(doasm=aasm;doasm;doasm=doasm->next) {      for(parityPDA=doasm->parityInfo;parityPDA;parityPDA=parityPDA->next) {        lrc = lp->VerifyParity(raidPtr, doasm->raidAddress, parityPDA,          correct_it, flags);        if (lrc > rc) {          /* see rf_parityscan.h for why this works */          rc = lrc;        }      }    }  }  else {    rc = RF_PARITY_COULD_NOT_VERIFY;  }  return(rc);}int rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)  RF_Raid_t             *raidPtr;  RF_RaidAddr_t          raidAddr;  RF_PhysDiskAddr_t     *parityPDA;  int                    correct_it;  RF_RaidAccessFlags_t   flags;{  RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);  RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);  RF_SectorCount_t numsector = parityPDA->numSector;  int numbytes  = rf_RaidAddressToByte(raidPtr, numsector);  int bytesPerStripe = numbytes * layoutPtr->numDataCol;  RF_DagHeader_t *rd_dag_h, *wr_dag_h;          /* read, write dag */  RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;  RF_AccessStripeMapHeader_t *asm_h;  RF_AccessStripeMap_t *asmap;  RF_AllocListElem_t *alloclist;  RF_PhysDiskAddr_t *pda;  char *pbuf, *buf, *end_p, *p;  int i, retcode;  RF_ReconUnitNum_t which_ru;  RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);  int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;  RF_AccTraceEntry_t tracerec;  RF_MCPair_t *mcpair;  retcode = RF_PARITY_OKAY;  mcpair = rf_AllocMCPair();  rf_MakeAllocList(alloclist);  RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);  RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist);     /* use calloc to make sure buffer is zeroed */  end_p = buf + bytesPerStripe;  rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,			   "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);  blockNode = rd_dag_h->succedents[0];  unblockNode = blockNode->succedents[0]->succedents[0];  /* map the stripe and fill in the PDAs in the dag */  asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);  asmap = asm_h->stripeMap;    for (pda=asmap->physInfo,i=0; i<layoutPtr->numDataCol; i++,pda=pda->next) {    RF_ASSERT(pda);    rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);    RF_ASSERT(pda->numSector != 0);    if (rf_TryToRedirectPDA(raidPtr, pda, 0)) goto out;   /* no way to verify parity if disk is dead.  return w/ good status */    blockNode->succedents[i]->params[0].p = pda;    blockNode->succedents[i]->params[2].v = psID;    blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);  }  RF_ASSERT(!asmap->parityInfo->next);  rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);  RF_ASSERT(asmap->parityInfo->numSector != 0);  if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))    goto out;  blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;  /* fire off the DAG */  bzero((char *)&tracerec,sizeof(tracerec));  rd_dag_h->tracerec = &tracerec;  if (rf_verifyParityDebug) {    printf("Parity verify read dag:\n");    rf_PrintDAGList(rd_dag_h);  }  RF_LOCK_MUTEX(mcpair->mutex);  mcpair->flag = 0;  rf_DispatchDAG(rd_dag_h, rf_MCPairWakeupFunc, (void *) mcpair);  while (!mcpair->flag) RF_WAIT_COND(mcpair->cond, mcpair->mutex);  RF_UNLOCK_MUTEX(mcpair->mutex);  if (rd_dag_h->status != rf_enable) {    RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");    retcode = RF_PARITY_COULD_NOT_VERIFY;    goto out;  }  for (p=buf; p<end_p; p+=numbytes) {    rf_bxor(p, pbuf, numbytes, NULL);  }  for (i=0; i<numbytes; i++) if (pbuf[i] != buf[bytesPerStripe+i]) {    if (!correct_it) RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",			       i,(u_char) buf[bytesPerStripe+i],(u_char) pbuf[i]);    retcode = RF_PARITY_BAD;    break;  }  if (retcode && correct_it) {    wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,			     "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);    wrBlock = wr_dag_h->succedents[0]; wrUnblock = wrBlock->succedents[0]->succedents[0];    wrBlock->succedents[0]->params[0].p = asmap->parityInfo;    wrBlock->succedents[0]->params[2].v = psID;    wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);    bzero((char *)&tracerec,sizeof(tracerec));    wr_dag_h->tracerec = &tracerec;    if (rf_verifyParityDebug) {      printf("Parity verify write dag:\n");      rf_PrintDAGList(wr_dag_h);    }    RF_LOCK_MUTEX(mcpair->mutex);    mcpair->flag = 0;    rf_DispatchDAG(wr_dag_h, rf_MCPairWakeupFunc, (void *) mcpair);    while (!mcpair->flag)      RF_WAIT_COND(mcpair->cond, mcpair->mutex);    RF_UNLOCK_MUTEX(mcpair->mutex);    if (wr_dag_h->status != rf_enable) {      RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");      retcode = RF_PARITY_COULD_NOT_CORRECT;    }    rf_FreeDAG(wr_dag_h);    if (retcode == RF_PARITY_BAD)      retcode = RF_PARITY_CORRECTED;  }out:  rf_FreeAccessStripeMap(asm_h);  rf_FreeAllocList(alloclist);  rf_FreeDAG(rd_dag_h);  rf_FreeMCPair(mcpair);  return(retcode);}int rf_TryToRedirectPDA(raidPtr, pda, parity)  RF_Raid_t          *raidPtr;  RF_PhysDiskAddr_t  *pda;  int                 parity;{  if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {    if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {      if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {	RF_RowCol_t or = pda->row, oc = pda->col;	RF_SectorNum_t os = pda->startSector;	if (parity) {	  (raidPtr->Layout.map->MapParity)(raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);	  if (rf_verifyParityDebug) printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",					or,oc,os,pda->row,pda->col,pda->startSector);	} else {	  (raidPtr->Layout.map->MapSector)(raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);	  if (rf_verifyParityDebug) printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",					or,oc,os,pda->row,pda->col,pda->startSector);	}      } else {	RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;	RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;	pda->row = spRow;	pda->col = spCol;      }    }  }  if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status)) return(1);  return(0);}/***************************************************************************************** * * currently a stub. * * takes as input an ASM describing a write operation and containing one failure, and * verifies that the parity was correctly updated to reflect the write. * * if it's a data unit that's failed, we read the other data units in the stripe and * the parity unit, XOR them together, and verify that we get the data intended for * the failed disk.  Since it's easy, we also validate that the right data got written * to the surviving data disks. * * If it's the parity that failed, there's really no validation we can do except the * above verification that the right data got written to all disks.  This is because * the new data intended for the failed disk is supplied in the ASM, but this is of * course not the case for the new parity. * ****************************************************************************************/int rf_VerifyDegrModeWrite(raidPtr, asmh)  RF_Raid_t                   *raidPtr;  RF_AccessStripeMapHeader_t  *asmh;{  return(0);}/* creates a simple DAG with a header, a block-recon node at level 1, * nNodes nodes at level 2, an unblock-recon node at level 3, and * a terminator node at level 4.  The stripe address field in * the block and unblock nodes are not touched, nor are the pda * fields in the second-level nodes, so they must be filled in later. * * commit point is established at unblock node - this means that any * failure during dag execution causes the dag to fail */RF_DagHeader_t *rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)  RF_Raid_t              *raidPtr;  int                     nNodes;  int                     bytesPerSU;  char                   *databuf;  int                   (*doFunc)();  int                   (*undoFunc)();  char                   *name;        /* node names at the second level */  RF_AllocListElem_t     *alloclist;  RF_RaidAccessFlags_t    flags;  int                     priority;{  RF_DagHeader_t *dag_h;  RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;  int i;    /* create the nodes, the block & unblock nodes, and the terminator node */  RF_CallocAndAdd(nodes, nNodes+3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);  blockNode   = &nodes[nNodes];  unblockNode = blockNode+1;  termNode   = unblockNode+1;  dag_h = rf_AllocDAGHeader();  dag_h->raidPtr = (void *) raidPtr;  dag_h->allocList = NULL;                               /* we won't use this alloc list */  dag_h->status = rf_enable;  dag_h->numSuccedents = 1;  dag_h->creator = "SimpleDAG";  /* this dag can not commit until the unblock node is reached   * errors prior to the commit point imply the dag has failed   */  dag_h->numCommitNodes = 1;  dag_h->numCommits = 0;  dag_h->succedents[0] = blockNode;  rf_InitNode(blockNode,   rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);  rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);  unblockNode->succedents[0] = termNode;  for (i=0; i<nNodes; i++) {    blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];    unblockNode->antType[i] = rf_control;    rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);    nodes[i].succedents[0] =  unblockNode;    nodes[i].antecedents[0] = blockNode;    nodes[i].antType[0] = rf_control;    nodes[i].params[1].p = (databuf + (i*bytesPerSU));  }  rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);  termNode->antecedents[0] = unblockNode;  termNode->antType[0] = rf_control;  return(dag_h);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -