📄 rf_parityscan.c
字号:
*/ return(RF_PARITY_OKAY); } rc = RF_PARITY_OKAY; if (lp->VerifyParity) { for(doasm=aasm;doasm;doasm=doasm->next) { for(parityPDA=doasm->parityInfo;parityPDA;parityPDA=parityPDA->next) { lrc = lp->VerifyParity(raidPtr, doasm->raidAddress, parityPDA, correct_it, flags); if (lrc > rc) { /* see rf_parityscan.h for why this works */ rc = lrc; } } } } else { rc = RF_PARITY_COULD_NOT_VERIFY; } return(rc);}int rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags) RF_Raid_t *raidPtr; RF_RaidAddr_t raidAddr; RF_PhysDiskAddr_t *parityPDA; int correct_it; RF_RaidAccessFlags_t flags;{ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); RF_SectorCount_t numsector = parityPDA->numSector; int numbytes = rf_RaidAddressToByte(raidPtr, numsector); int bytesPerStripe = numbytes * layoutPtr->numDataCol; RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */ RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock; RF_AccessStripeMapHeader_t *asm_h; RF_AccessStripeMap_t *asmap; RF_AllocListElem_t *alloclist; RF_PhysDiskAddr_t *pda; char *pbuf, *buf, *end_p, *p; int i, retcode; RF_ReconUnitNum_t which_ru; RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; RF_AccTraceEntry_t tracerec; RF_MCPair_t *mcpair; retcode = RF_PARITY_OKAY; mcpair = rf_AllocMCPair(); rf_MakeAllocList(alloclist); RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist); RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make sure buffer is zeroed */ end_p = buf + bytesPerStripe; rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY); blockNode = rd_dag_h->succedents[0]; unblockNode = blockNode->succedents[0]->succedents[0]; /* map the stripe and fill in the PDAs in the dag */ asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP); asmap = asm_h->stripeMap; for (pda=asmap->physInfo,i=0; i<layoutPtr->numDataCol; i++,pda=pda->next) { RF_ASSERT(pda); rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); RF_ASSERT(pda->numSector != 0); if (rf_TryToRedirectPDA(raidPtr, pda, 0)) goto out; /* no way to verify parity if disk is dead. return w/ good status */ blockNode->succedents[i]->params[0].p = pda; blockNode->succedents[i]->params[2].v = psID; blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); } RF_ASSERT(!asmap->parityInfo->next); rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1); RF_ASSERT(asmap->parityInfo->numSector != 0); if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1)) goto out; blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo; /* fire off the DAG */ bzero((char *)&tracerec,sizeof(tracerec)); rd_dag_h->tracerec = &tracerec; if (rf_verifyParityDebug) { printf("Parity verify read dag:\n"); rf_PrintDAGList(rd_dag_h); } RF_LOCK_MUTEX(mcpair->mutex); mcpair->flag = 0; rf_DispatchDAG(rd_dag_h, rf_MCPairWakeupFunc, (void *) mcpair); while (!mcpair->flag) RF_WAIT_COND(mcpair->cond, mcpair->mutex); RF_UNLOCK_MUTEX(mcpair->mutex); if (rd_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to verify parity: can't read the stripe\n"); retcode = RF_PARITY_COULD_NOT_VERIFY; goto out; } for (p=buf; p<end_p; p+=numbytes) { rf_bxor(p, pbuf, numbytes, NULL); } for (i=0; i<numbytes; i++) if (pbuf[i] != buf[bytesPerStripe+i]) { if (!correct_it) RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n", i,(u_char) buf[bytesPerStripe+i],(u_char) pbuf[i]); retcode = RF_PARITY_BAD; break; } if (retcode && correct_it) { wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY); wrBlock = wr_dag_h->succedents[0]; wrUnblock = wrBlock->succedents[0]->succedents[0]; wrBlock->succedents[0]->params[0].p = asmap->parityInfo; wrBlock->succedents[0]->params[2].v = psID; wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); bzero((char *)&tracerec,sizeof(tracerec)); wr_dag_h->tracerec = &tracerec; if (rf_verifyParityDebug) { printf("Parity verify write dag:\n"); rf_PrintDAGList(wr_dag_h); } RF_LOCK_MUTEX(mcpair->mutex); mcpair->flag = 0; rf_DispatchDAG(wr_dag_h, rf_MCPairWakeupFunc, (void *) mcpair); while (!mcpair->flag) RF_WAIT_COND(mcpair->cond, mcpair->mutex); RF_UNLOCK_MUTEX(mcpair->mutex); if (wr_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n"); retcode = RF_PARITY_COULD_NOT_CORRECT; } rf_FreeDAG(wr_dag_h); if (retcode == RF_PARITY_BAD) retcode = RF_PARITY_CORRECTED; }out: rf_FreeAccessStripeMap(asm_h); rf_FreeAllocList(alloclist); rf_FreeDAG(rd_dag_h); rf_FreeMCPair(mcpair); return(retcode);}int rf_TryToRedirectPDA(raidPtr, pda, parity) RF_Raid_t *raidPtr; RF_PhysDiskAddr_t *pda; int parity;{ if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) { if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) { if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { RF_RowCol_t or = pda->row, oc = pda->col; RF_SectorNum_t os = pda->startSector; if (parity) { (raidPtr->Layout.map->MapParity)(raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP); if (rf_verifyParityDebug) printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n", or,oc,os,pda->row,pda->col,pda->startSector); } else { (raidPtr->Layout.map->MapSector)(raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP); if (rf_verifyParityDebug) printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n", or,oc,os,pda->row,pda->col,pda->startSector); } } else { RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow; RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol; pda->row = spRow; pda->col = spCol; } } } if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status)) return(1); return(0);}/***************************************************************************************** * * currently a stub. * * takes as input an ASM describing a write operation and containing one failure, and * verifies that the parity was correctly updated to reflect the write. * * if it's a data unit that's failed, we read the other data units in the stripe and * the parity unit, XOR them together, and verify that we get the data intended for * the failed disk. Since it's easy, we also validate that the right data got written * to the surviving data disks. * * If it's the parity that failed, there's really no validation we can do except the * above verification that the right data got written to all disks. This is because * the new data intended for the failed disk is supplied in the ASM, but this is of * course not the case for the new parity. * ****************************************************************************************/int rf_VerifyDegrModeWrite(raidPtr, asmh) RF_Raid_t *raidPtr; RF_AccessStripeMapHeader_t *asmh;{ return(0);}/* creates a simple DAG with a header, a block-recon node at level 1, * nNodes nodes at level 2, an unblock-recon node at level 3, and * a terminator node at level 4. The stripe address field in * the block and unblock nodes are not touched, nor are the pda * fields in the second-level nodes, so they must be filled in later. * * commit point is established at unblock node - this means that any * failure during dag execution causes the dag to fail */RF_DagHeader_t *rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority) RF_Raid_t *raidPtr; int nNodes; int bytesPerSU; char *databuf; int (*doFunc)(); int (*undoFunc)(); char *name; /* node names at the second level */ RF_AllocListElem_t *alloclist; RF_RaidAccessFlags_t flags; int priority;{ RF_DagHeader_t *dag_h; RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode; int i; /* create the nodes, the block & unblock nodes, and the terminator node */ RF_CallocAndAdd(nodes, nNodes+3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist); blockNode = &nodes[nNodes]; unblockNode = blockNode+1; termNode = unblockNode+1; dag_h = rf_AllocDAGHeader(); dag_h->raidPtr = (void *) raidPtr; dag_h->allocList = NULL; /* we won't use this alloc list */ dag_h->status = rf_enable; dag_h->numSuccedents = 1; dag_h->creator = "SimpleDAG"; /* this dag can not commit until the unblock node is reached * errors prior to the commit point imply the dag has failed */ dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->succedents[0] = blockNode; rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist); rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist); unblockNode->succedents[0] = termNode; for (i=0; i<nNodes; i++) { blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i]; unblockNode->antType[i] = rf_control; rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist); nodes[i].succedents[0] = unblockNode; nodes[i].antecedents[0] = blockNode; nodes[i].antType[0] = rf_control; nodes[i].params[1].p = (databuf + (i*bytesPerSU)); } rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist); termNode->antecedents[0] = unblockNode; termNode->antType[0] = rf_control; return(dag_h);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -