⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aprod2ann.m

📁 书籍“Regularization tools for training large feed-forward neural networks using Automatic Differentiat
💻 M
字号:
function [Af] =aprod2ANN(mode,m,n,e,iw,rw,w1,b1,Output_Layer2,Deriv_Layer2,...	df1,w2,b2,Output_Layer3,Deriv_Layer3,df2,P,T)%%Call: [Af] =aprod2ANN(mode,m,n,e,iw,rw,w1,b1,Output_Layer2,Deriv_Layer2,...	%df1,w2,b2,Output_Layer3,Deriv_Layer3,df2,P,T)%This routine computes A*f or A'*f, where A is the Jacobian corresponding%to a FFANN with one hidden layer.%It should normally be used with the routine LSQR written by Paige%and Saunders%Note that if mode == 1 the input parameter e should be a column vector.%If mode == 2 it is assumed that e is a Thrd*q matrix corresponding to the%output layer.f=e(:);% If mode == 1 aprod2ANN returns y=A*f% If mode == 2 aprod2ANN returns y=A'*f%[Fst,q]=size(P);	% # nodes in Input layer (first layer)[Snd,r]=size(w1);	% # nodes in 1'st hidden layer (second layer)if Fst ~= r		% q is # samples presented to the inputs   error('In aprod2ANN: Fst .ne. r');end[Thrd,r]=size(w2);	% # nodes in output layer (third layer)if Snd ~= r   error('In aprod2ANN: Snd .ne. r')end%[Fth,r]=size(w3);	% # nodes in output layer (forth layer)Om=Fst*Snd+Snd;		% # weights in first hidden layerNm=Om+Snd*Thrd+Thrd;	% # total weights%Mm=Nm+Thrd*Fth+Fth;	% # total weightslenf=max(size(f));if mode == 1  if Nm ~= lenf     error('In aprod2ANN: Nm .ne. lenf (mode == 1)');  else     Af=zeros(q*Thrd,1);  endelseif (q*Thrd) ~= lenf      error('In aprod2ANN: q*Thrd .ne. lenf (mode == 2)');    else      Af=zeros(Nm,1);end%if mode == 1TEMP=ones(1,q);%Compute A*f by using forward mode%time1=cputime;%unpack the vector elements such that same kind of computation as%in the function evaluation can be done.%First hidden layer%for k=1:Fst,   %r1=(k-1)*Snd;   %w1(:,k)=f(r1+1:r1+Snd);%endw1=reshape(f(1:Fst*Snd),Snd,Fst);b1=f(Fst*Snd+1:Fst*Snd+Snd);O_L2=b1*TEMP+w1*P;S2=Deriv_Layer2 .* O_L2;%Output layer%for k=1:Snd,   %r1=Om+(k-1)*Thrd;   %w2temp(:,k)=f(r1+1:r1+Thrd);%endw2temp=reshape(f(Om+1:Om+Snd*Thrd),Thrd,Snd);b2=f(Om+Snd*Thrd+1:Om+Snd*Thrd+Thrd);O_L3=b2*TEMP+w2*S2+w2temp*Output_Layer2;S3=Deriv_Layer3 .* O_L3;Af=S3(:);else % Now mode should be 2   %Compute A'*f   d2=feval(df2,Output_Layer3,e);   d1=feval(df1,Output_Layer2,d2,w2);   [dw1,db1]=learnbp(P,d1,1);   [dw2,db2]=learnbp(Output_Layer2,d2,1);   Af=[dw1(:), db1(:); dw2(:); db2(:)];end %of if mode == 1end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -