📄 ttr1.m
字号:
function [w1,b1,tr,rq] = ttr1(w1,b1,f1,... xc,P,T,VA,VAT,TE,TET,TP)%TTR1 Trains a large feed-forward network containing no hidden layers%the Gauss-Newton method on a Tikhonov regularized problem.% % [W1,B1,TR,RQ] =TTR1(W1,B1,'F1',% XC,P,T,VA,VAT,TE,TET,TP)% Wi - Weight matrix of ith layer.% Bi - Bias vector of ith layer.% F - Transfer function (string) of ith layer.% XC - Center point for the weights and biases% P - RxQ matrix of input vectors.% T - S2xQ matrix of target vectors.% VA - matrix of validation set% VAT - matrix of target values corresponding to VA% TE - matrix of test set% TET - matrix of target values corresponding to TE% TP - Training parameters (optional).% % Training parameters are:% TP(1) - #epochs in striplength, (also between displays), default = 5% TP(2) - Maximum number of epochs to train, default = 50% TP(3) - Sum-squared error goal, default = 0.01% TP(4) - Generalization loss threshold (%), default = 5% TP(5) - Initial value of MU, default = 0.1% TP(6) - Minimum value of MU, default = 0.001% TP(7) - controls termination criteria. Code is two digets XY.% X controls outer termination criterion. =1 absolute criterion% on error function is used, =2 relative difference criterion% on error function is used, >2 early stopping is used% (default=3)% Y controls inner criterion used when the CG-method is used% to compute the search direction. =1 original criteria from% LSQR is used, =2 Dembo et al criteria is used, =3 Jerry's% criterion is used (default=2)% TP(8) - controls linesearch% =1 parabola in R(m) is used, =2 curvelinear search is used% (default=1)% TP(9) - controls method to compute search direction% =2 unscaled CG, =3 diagonal scaled CG% (default =2)%% Missing parameters and NaN's are replaced with defaults.%% Returns:% Wi - new weights.% Bi - new biases.% TR - resulting matrix containing a row of information corresponding% to each epoch (iteration).% Each row contains % "Fsq MU relquot E(va) norm(dx) progress/1000 alpha"% (See paper "Regularization tools for training% feed-forward neural networks, Part I: Theory and basic% algorithms" to find some description of the row contents)% RQ - resulting quantities (see below)% % Resulting quantities are:% RQ(1) - total number of iterations (epochs)% RQ(2) - total number of net evaluations (funcev)% RQ(3) - elapsed time in computing searchdirection% RQ(4) - #total inner iterations in computing search direction% RQ(5) - error for the validation set (min(E(va)))% RQ(6) - error for the test set at the point where min(E(va)) occurs% RQ(7) - number of epochs until min(E(va))) occurs% RQ(8) - total time inside ttr1.m%% Per Lindstrom, Computing Science, Umea University, Sweden% email: perl@cs.umu.se% $Revision: 0.0if nargin < 10 error('TTR1: Not enough arguments.')enddisp('TTR1: Sorry! Not implemented')end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -