📄 practice.m
字号:
clc;
clear;
data=[
5.1,3.5,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,1.3,0.2
4.6,3.1,1.5,0.2
5.0,3.6,1.4,0.2
5.4,3.9,1.7,0.4
4.6,3.4,1.4,0.3
5.0,3.4,1.5,0.2
4.4,2.9,1.4,0.2
4.9,3.1,1.5,0.1
5.4,3.7,1.5,0.2
4.8,3.4,1.6,0.2
4.8,3.0,1.4,0.1
4.3,3.0,1.1,0.1
5.8,4.0,1.2,0.2
5.7,4.4,1.5,0.4
5.4,3.9,1.3,0.4
5.1,3.5,1.4,0.3
5.7,3.8,1.7,0.3
5.1,3.8,1.5,0.3
5.4,3.4,1.7,0.2
5.1,3.7,1.5,0.4
4.6,3.6,1.0,0.2
5.1,3.3,1.7,0.5
4.8,3.4,1.9,0.2
5.0,3.0,1.6,0.2
5.0,3.4,1.6,0.4
5.2,3.5,1.5,0.2
5.2,3.4,1.4,0.2
4.7,3.2,1.6,0.2
4.8,3.1,1.6,0.2
5.4,3.4,1.5,0.4
5.2,4.1,1.5,0.1
5.5,4.2,1.4,0.2
4.9,3.1,1.5,0.1
5.0,3.2,1.2,0.2
5.5,3.5,1.3,0.2
4.9,3.1,1.5,0.1
4.4,3.0,1.3,0.2
5.1,3.4,1.5,0.2
5.0,3.5,1.3,0.3
4.5,2.3,1.3,0.3
4.4,3.2,1.3,0.2
5.0,3.5,1.6,0.6
5.1,3.8,1.9,0.4
4.8,3.0,1.4,0.3
5.1,3.8,1.6,0.2
4.6,3.2,1.4,0.2
5.3,3.7,1.5,0.2
5.0,3.3,1.4,0.2
7.0,3.2,4.7,1.4
6.4,3.2,4.5,1.5
6.9,3.1,4.9,1.5
5.5,2.3,4.0,1.3
6.5,2.8,4.6,1.5
5.7,2.8,4.5,1.3
6.3,3.3,4.7,1.6
4.9,2.4,3.3,1.0
6.6,2.9,4.6,1.3
5.2,2.7,3.9,1.4
5.0,2.0,3.5,1.0
5.9,3.0,4.2,1.5
6.0,2.2,4.0,1.0
6.1,2.9,4.7,1.4
5.6,2.9,3.6,1.3
6.7,3.1,4.4,1.4
5.6,3.0,4.5,1.5
5.8,2.7,4.1,1.0
6.2,2.2,4.5,1.5
5.6,2.5,3.9,1.1
5.9,3.2,4.8,1.8
6.1,2.8,4.0,1.3
6.3,2.5,4.9,1.5
6.1,2.8,4.7,1.2
6.4,2.9,4.3,1.3
6.6,3.0,4.4,1.4
6.8,2.8,4.8,1.4
6.7,3.0,5.0,1.7
6.0,2.9,4.5,1.5
5.7,2.6,3.5,1.0
5.5,2.4,3.8,1.1
5.5,2.4,3.7,1.0
5.8,2.7,3.9,1.2
6.0,2.7,5.1,1.6
5.4,3.0,4.5,1.5
6.0,3.4,4.5,1.6
6.7,3.1,4.7,1.5
6.3,2.3,4.4,1.3
5.6,3.0,4.1,1.3
5.5,2.5,4.0,1.3
5.5,2.6,4.4,1.2
6.1,3.0,4.6,1.4
5.8,2.6,4.0,1.2
5.0,2.3,3.3,1.0
5.6,2.7,4.2,1.3
5.7,3.0,4.2,1.2
5.7,2.9,4.2,1.3
6.2,2.9,4.3,1.3
5.1,2.5,3.0,1.1
5.7,2.8,4.1,1.3
6.3,3.3,6.0,2.5
5.8,2.7,5.1,1.9
7.1,3.0,5.9,2.1
6.3,2.9,5.6,1.8
6.5,3.0,5.8,2.2
7.6,3.0,6.6,2.1
4.9,2.5,4.5,1.7
7.3,2.9,6.3,1.8
6.7,2.5,5.8,1.8
7.2,3.6,6.1,2.5
6.5,3.2,5.1,2.0
6.4,2.7,5.3,1.9
6.8,3.0,5.5,2.1
5.7,2.5,5.0,2.0
5.8,2.8,5.1,2.4
6.4,3.2,5.3,2.3
6.5,3.0,5.5,1.8
7.7,3.8,6.7,2.2
7.7,2.6,6.9,2.3
6.0,2.2,5.0,1.5
6.9,3.2,5.7,2.3
5.6,2.8,4.9,2.0
7.7,2.8,6.7,2.0
6.3,2.7,4.9,1.8
6.7,3.3,5.7,2.1
7.2,3.2,6.0,1.8
6.2,2.8,4.8,1.8
6.1,3.0,4.9,1.8
6.4,2.8,5.6,2.1
7.2,3.0,5.8,1.6
7.4,2.8,6.1,1.9
7.9,3.8,6.4,2.0
6.4,2.8,5.6,2.2
6.3,2.8,5.1,1.5
6.1,2.6,5.6,1.4
7.7,3.0,6.1,2.3
6.3,3.4,5.6,2.4
6.4,3.1,5.5,1.8
6.0,3.0,4.8,1.8
6.9,3.1,5.4,2.1
6.7,3.1,5.6,2.4
6.9,3.1,5.1,2.3
5.8,2.7,5.1,1.9
6.8,3.2,5.9,2.3
6.7,3.3,5.7,2.5
6.7,3.0,5.2,2.3
6.3,2.5,5.0,1.9
6.5,3.0,5.2,2.0
6.2,3.4,5.4,2.3
5.9,3.0,5.1,1.8];
max=10;%最大值
min=0;%最小值
cluster_n=3;%所要聚类的个数
pop_size=150;%种群大小
Pc=0.25;%交叉概率
Pm=0.05;%变异概率
max_run=300;%最大运行次数
N=size(data,2);%特征维数
Num_boolean=7;%表示“7.5“所要得二进制个数
G_F=zeros(pop_size,1);%染色体适应度
U=zeros(cluster_n, size(data,1));%初始化隶度矩U
expo=2;%权值m大小
SL=2;
min_impro=0.0001;
%**********************************************************************
%初始化聚类中心
%染色体长度=聚类数(cluster_n)*维数(N)*每个数所要得位数(Num_boolean)
%染色体种群G,表示聚类中心
G=round(rand(pop_size,cluster_n*N*Num_boolean));
for h=1:max_run
for i=1:pop_size %遍历整个种群
center=zeros(cluster_n,N);%初始化单个染色体中心
center=code(G(i,:),cluster_n,N,max,min,Num_boolean);%(1)对染色体解码,得到实数表示的聚类中心
[U,obj_fitness(i),obj(i)]=Uconvert(data, cluster_n, expo,center);
end
if i > 1,
if abs(obj(i) - obj(i-10)) < min_impro, break; end,
end
T(h)=h;
Fit=obj;
[Order,Index]=sort(Fit);
BF=Order(1);
BFI=BF;
BG=G(Index(1),:);
ln=1;
for i=1:1:SL
BGG(i,:)=G(Index(ln),:);
ln=ln+1;
end
Best_value(h)=Order(1);
Best_chrom=G(Index(1),:);
NG=selection(G,obj_fitness,pop_size);
NG=crossover(NG,Pc,pop_size);
NG=mutation(NG,Pm,pop_size);
Rs=4;
for i=1:1:SL
NG(pop_size-Rs,:)=BGG(i,:);
Rs=Rs-1;
end
G=NG;
end
center
b=sort(Best_value);
Pbest=b(1)
plot(T,Best_value)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -