📄 update_contrast.m
字号:
function J=update_contrast(contrast,x,kparam,details,ii,jj);
% UPDATE_CONTRAST_KCCA - compute the Kernel-ICA contrast function based on
% kernel canonical correlation analysis starting from
% already calculated details, useful for calculating
% empirical gradient
%
% contrast - contrast function used, 'kcca' or 'kgv'
% x - mixed components
% kparam - contrast parameters, with following fields
% sigmas - kernel widths (one per component)
% kappas - regularization parameters (one per component)
% etas - incomplete Cholesky tolerance (one per component)
% Copyright (c) Francis R. Bach, 2002.
N=size(x,2); % number of data points
m=size(x,1); % number of components
% ensures that ii is less than jj
if (ii>jj), te=ii; ii=jj; jj=te; end
sigmas=kparam.sigmas;
kappas=kparam.kappas;
etas=kparam.etas;
% download details
Rkappa=details.Rkappa;
Us=details.Us;
Lambdas=details.Lambdas;
Drs=details.Drs;
sizes=details.sizes;
oldstarts=details.starts;
oldsizes=sizes;
%Updates Us, Lambdas, Drs for indices ii and jj
for i=[ii jj]
% cholesky decomposition using a MEX-file
[G,Pvec] =chol_gauss(x(i,:)/sigmas(i),1,N*etas(i));
[a,Pvec]=sort(Pvec);
G=centerpartial(G(Pvec,:));
% regularization (see paper for details)
[A,D]=eig(G'*G);
D=diag(D);
indexes=find(D>=N*etas(i) & isreal(D)); %removes small eigenvalues
[newinds,order]=sort(D(indexes));
order=flipud(order);
neig=length(indexes);
indexes=indexes(order(1:neig));
if (isempty(indexes)), indexes=[1]; end
D=D(indexes);
V=G*(A(:,indexes)*diag(sqrt(1./(D))));
Us{i}=V;
Lambdas{i}=D;
Dr=D;
for j=1:length(D)
Dr(j)=D(j)/(N*kappas(i)+D(j));
end
Drs{i}=Dr;
sizes(i)=size(Drs{i},1);
end
starts=cumsum([1 sizes]);
starts(m+1)=[];
% now creates a new Rkappa, we know that ii is less than jj
newRkappa=eye(sum(sizes));
for i=2:m
for j=1:i-1
if ( (j==ii) | (i==jj) | (i==ii) | (j==jj) )
newbottom=diag(Drs{i})*(Us{i}'*Us{j})*diag(Drs{j});
newRkappa(starts(i):starts(i)+sizes(i)-1,starts(j):starts(j)+sizes(j)-1)=newbottom;
newRkappa(starts(j):starts(j)+sizes(j)-1,starts(i):starts(i)+sizes(i)-1)=newbottom';
else
newbottom= Rkappa(oldstarts(i):oldstarts(i)+oldsizes(i)-1,oldstarts(j):oldstarts(j)+oldsizes(j)-1);
newRkappa(starts(i):starts(i)+sizes(i)-1,starts(j):starts(j)+sizes(j)-1)=newbottom;
newRkappa(starts(j):starts(j)+sizes(j)-1,starts(i):starts(i)+sizes(i)-1)=newbottom';
end
end
end
switch contrast
case 'kcca'
OPTIONS.disp=0;
OPTIONS.tol=1e-5;
D=eigs(newRkappa,1,'SM',OPTIONS);
J=-.5*log(D);
case 'kgv'
D=det(newRkappa);
J=-.5*log(D);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function G2=centerpartial(G1)
% CENTERPARTIAL - Center a gram matrix of the form K=G*G'
[N,NG]=size(G1);
G2 = G1 - repmat(mean(G1,1),N,1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -