📄 contrast_tca_kgv_multupdate.m
字号:
function [score,details]=contrast_tca_kgv_multupdate(x,W,param,js,details);
if (nargout>1), detail=1; else detail=0; end
[m N]=size(x);
x=W*x;
sigma=x*x'/N;
kkappa=param.kappa;
keta=param.eta;
lambdaG=param.lambdaG;
lambdaC=param.lambdaC;
lambdaT=param.lambdaT;
Rkappa=details.Rkappa;
Us=details.Us;
Lambdas=details.Lambdas;
Drs=details.Drs;
sizes=details.sizes;
oldstarts=details.starts;
oldsizes=sizes;
weights=details.weights;
%redo the 2 cholesky decompositions
for k=js
switch (param.kernel)
case 'hermite'
[G,Pvec] =chol_hermite(x(k,:),param.sigma,param.p,N*param.eta);
case 'gaussian'
[G,Pvec] =chol_gauss(x(k,:)/param.sigma,1,N*param.eta);
case 'lineargaussian'
[G,Pvec] =chol_gauss(x(k,:),param.sigma,param.lambdaKG,N*param.eta);
case 'poly'
[G,Pvec] =chol_poly(x(k,:),param.r,param.s,param.d,N*param.eta);
end
[a,Pvec]=sort(Pvec);
G=centerpartial(G(Pvec,:));
% regularization (see paper for details)
[A,D]=eig(G'*G);
D=diag(D);
indexes=find(D>=N*keta & isreal(D)); %removes small eigenvalues
[newinds,order]=sort(D(indexes));
order=flipud(order);
neig=length(indexes);
indexes=indexes(order(1:neig));
if (isempty(indexes)), indexes=[1]; end
D=D(indexes);
V=G*(A(:,indexes)*diag(sqrt(1./(D))));
Us{k}=V;
Lambdas{k}=D;
Dr=D;
for j2=1:length(D)
Dr(j2)=D(j2)/(N*kkappa+D(j2));
end
Drs{k}=Dr;
sizes(k)=size(Drs{k},1);
end
starts=cumsum([1 sizes]);
starts(m+1)=[];
newRkappa=eye(sum(sizes));
for i=2:m
for j=1:i-1
if ( ismember(i,js) | ismember(j,js) )
newbottom=diag(Drs{i})*(Us{i}'*Us{j})*diag(Drs{j});
newRkappa(starts(i):starts(i)+sizes(i)-1,starts(j):starts(j)+sizes(j)-1)=newbottom;
newRkappa(starts(j):starts(j)+sizes(j)-1,starts(i):starts(i)+sizes(i)-1)=newbottom';
else
newbottom= Rkappa(oldstarts(i):oldstarts(i)+oldsizes(i)-1,oldstarts(j):oldstarts(j)+oldsizes(j)-1);
newRkappa(starts(i):starts(i)+sizes(i)-1,starts(j):starts(j)+sizes(j)-1)=newbottom;
newRkappa(starts(j):starts(j)+sizes(j)-1,starts(i):starts(i)+sizes(i)-1)=newbottom';
end
end
end
Rkappa=newRkappa;
clear newRkappa;
if (detail)
% outputs details
details.Us=Us;
details.Lambdas=Lambdas;
details.Drs=Drs;
details.Rkappa=Rkappa;
details.sizes=sizes;
details.starts=starts;
end
% MUTUAL INFORMATION
J=-.5*log(det(Rkappa));
details.mutinf=J;
weights=zeros(m);
% split, whether we need to calculate the tree or not
% compute all pairwise mutual informations
weights=zeros(m);
for i=1:m-1
for j=i+1:m
Rkappap1=Rkappa(starts(i):starts(i)+sizes(i)-1,starts(j):starts(j)+sizes(j)-1);
Rkappasm=[eye(sizes(i)) Rkappap1; Rkappap1' eye(sizes(j))];
weights(i,j)=-.5*log(det(Rkappasm));
corr=sigma(i,j)/sigma(i,i)^.5/sigma(j,j)^.5;
weights(i,j)=weights(i,j)-lambdaG*.5*log(1-corr^2)+ ...
+lambdaC*.5*log(1+1e-14-corr^2);
weights(j,i)=weights(i,j);
end
end
details.weights=weights;
if param.fixedtree
tree=param.tree;
weightsum=0;
for k=1:size(param.tree,2);
weightsum = weightsum - weights(param.tree(1,k),param.tree(2,k));
end
else
if isfield(param,'edgeprior'), edgeprior=param.edgeprior; else edgeprior=0; end
[tree,weightsum] = minimum_nonspanning_tree_edges(edgeprior-weights,[],param.maxedges);
end
J=J+lambdaT*weightsum;
details.tree=tree;
score=J;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function G2=centerpartial(G1)
% CENTERPARTIAL - Center a gram matrix of the form K=G*G'
[N,NG]=size(G1);
G2 = G1 - repmat(mean(G1,1),N,1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -