📄 phaselock.c
字号:
/*
* phaselock.c - Phase locking for NTP client
*
* Copyright 2000 Larry Doolittle <LRDoolittle@lbl.gov>
* Last hack: 28 November, 2000
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (Version 2,
* June 1991) as published by the Free Software Foundation. At the
* time of writing, that license was published by the FSF with the URL
* http://www.gnu.org/copyleft/gpl.html, and is incorporated herein by
* reference.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Possible future improvements:
* - Write and test live mode
* - Subtract configurable amount from errorbar
* - Sculpt code so it's legible, this version is out of control
* - Write documentation :-(
*/
#include <stdio.h>
#define ENABLE_DEBUG
#define RING_SIZE 16
struct datum {
unsigned int absolute;
double skew;
double errorbar;
int freq;
/* s.s.min and s.s.max (skews) are "corrected" to what they would
* have been if freq had been constant at its current value during
* the measurements.
*/
union {
struct { double min; double max; } s;
double ss[2];
} s;
/*
double smin;
double smax;
*/
} d_ring[RING_SIZE];
struct _seg {
double slope;
double offset;
} maxseg[RING_SIZE+1], minseg[RING_SIZE+1];
#ifdef ENABLE_DEBUG
extern int debug;
#define DEBUG_OPTION "d"
#else
#define debug 0
#define DEBUG_OPTION
#endif
/* draw a line from a to c, what the offset is of that line
* where that line matches b's slope coordinate.
*/
double interpolate(struct _seg *a, struct _seg *b, struct _seg *c)
{
double x, y;
x = (b->slope - a->slope) / (c->slope - a->slope) ;
y = a->offset + x * (c->offset - a->offset);
return y;
}
int next_up(int i) { int r = i+1; if (r>=RING_SIZE) r=0; return r;}
int next_dn(int i) { int r = i-1; if (r<0) r=RING_SIZE-1; return r;}
/* Looks at the line segments that start at point j, that end at
* all following points (ending at index rp). The initial point
* is on curve s0, the ending point is on curve s1. The curve choice
* (s.min vs. s.max) is based on the index in ss[]. The scan
* looks for the largest (sign=0) or smallest (sign=1) slope.
*/
int search(int rp, int j, int s0, int s1, int sign, struct _seg *answer)
{
double dt, slope;
int n, nextj=0, cinit=1;
for (n=next_up(j); n!=next_up(rp); n=next_up(n)) {
if (0 && debug) printf("d_ring[%d].s.ss[%d]=%f d_ring[%d].s.ss[%d]=%f\n",
n, s0, d_ring[n].s.ss[s0], j, s1, d_ring[j].s.ss[s1]);
dt = d_ring[n].absolute - d_ring[j].absolute;
slope = (d_ring[n].s.ss[s0] - d_ring[j].s.ss[s1]) / dt;
if (0 && debug) printf("slope %d%d%d [%d,%d] = %f\n",
s0, s1, sign, j, n, slope);
if (cinit || (slope < answer->slope) ^ sign) {
answer->slope = slope;
answer->offset = d_ring[n].s.ss[s0] +
slope*(d_ring[rp].absolute - d_ring[n].absolute);
cinit = 0;
nextj = n;
}
}
return nextj;
}
/* Pseudo-class for finding consistent frequency shift */
#define MIN_INIT 20
struct _polygon {
double l_min;
double r_min;
} df;
void polygon_reset()
{
df.l_min = MIN_INIT;
df.r_min = MIN_INIT;
}
double find_df(int *flag)
{
if (df.l_min == 0.0) {
if (df.r_min == 0.0) {
return 0.0; /* every point was OK */
} else {
return -df.r_min;
}
} else {
if (df.r_min == 0.0) {
return df.l_min;
} else {
if (flag) *flag=1;
return 0.0; /* some points on each side,
* or no data at all */
}
}
}
/* Finds the amount of delta-f required to move a point onto a
* target line in delta-f/delta-t phase space. Any line is OK
* as long as it's not convex and never returns greater than
* MIN_INIT. */
double find_shift(double slope, double offset)
{
double shift = slope - offset/600.0;
double shift2 = slope + 0.3 - offset/6000.0;
if (shift2 < shift) shift = shift2;
if (debug) printf("find_shift %f %f -> %f\n", slope, offset, shift);
if (shift < 0) return 0.0;
return shift;
}
void polygon_point(struct _seg *s)
{
double l, r;
if (debug) printf("loop %f %f\n", s->slope, s->offset);
l = find_shift(- s->slope, s->offset);
r = find_shift( s->slope, - s->offset);
if (l < df.l_min) df.l_min = l;
if (r < df.r_min) df.r_min = r;
if (debug) printf("constraint left: %f %f \n", l, df.l_min);
if (debug) printf("constraint right: %f %f \n", r, df.r_min);
}
/* Something like linear feedback to be used when we are "close" to
* phase lock. Not really used at the moment: the logic in find_df()
* never sets the flag. */
double find_df_center(struct _seg *min, struct _seg *max)
{
double slope = 0.5 * (max->slope + min->slope);
double dslope = (max->slope - min->slope);
double offset = 0.5 * (max->offset + min->offset);
double doffset = (max->offset - min->offset);
double delta = -offset/600.0 - slope;
double factor = 60.0/(doffset+dslope*600.0);
if (debug) printf("find_df_center %f %f\n", delta, factor);
return factor*delta;
}
int contemplate_data(unsigned int absolute, double skew, double errorbar, int freq)
{
/* Here is the actual phase lock loop.
* Need to keep a ring buffer of points to make a rational
* decision how to proceed. if (debug) print a lot.
*/
static int rp=0, valid=0;
int both_sides_now=0;
int j, n, c, max_avail, min_avail, dinit;
int nextj=0; /* initialization not needed; but gcc can't figure out my logic */
double cum;
struct _seg check, save_min, save_max;
double last_slope;
int delta_freq;
double delta_f;
int inconsistent=0, max_imax, max_imin=0, min_imax, min_imin=0;
int computed_freq=freq;
if (debug) printf("xontemplate %u %.1f %.1f %d\n",absolute,skew,errorbar,freq);
d_ring[rp].absolute = absolute;
d_ring[rp].skew = skew;
d_ring[rp].errorbar = errorbar - 800.0; /* quick hack to speed things up */
d_ring[rp].freq = freq;
if (valid<RING_SIZE) ++valid;
if (valid==RING_SIZE) {
/*
* Pass 1: correct for wandering freq's */
cum = 0.0;
if (debug) printf("\n");
for (j=rp; ; j=n) {
d_ring[j].s.s.max = d_ring[j].skew - cum + d_ring[j].errorbar;
d_ring[j].s.s.min = d_ring[j].skew - cum - d_ring[j].errorbar;
if (debug) printf("hist %d %d %f %f %f\n",j,d_ring[j].absolute-absolute,
cum,d_ring[j].s.s.min,d_ring[j].s.s.max);
n=next_dn(j);
if (n == rp) break;
/* Assume the freq change took place immediately after
* the data was taken; this is valid for the case where
* this program was responsible for the change.
*/
cum = cum + (d_ring[j].absolute-d_ring[n].absolute) *
(double)(d_ring[j].freq-freq)/65536;
}
/*
* Pass 2: find the convex down envelope of s.max, composed of
* line segments in s.max vs. absolute space, which are
* points in freq vs. dt space. Find points in order of increasing
* slope == freq */
dinit=1; last_slope=-100;
for (c=1, j=next_up(rp); ; j=nextj) {
nextj = search(rp, j, 1, 1, 0, &maxseg[c]);
search(rp, j, 0, 1, 1, &check);
if (check.slope < maxseg[c].slope && check.slope > last_slope &&
(dinit || check.slope < save_min.slope)) {dinit=0; save_min=check; }
if (debug) printf("maxseg[%d] = %f *x+ %f\n",
c, maxseg[c].slope, maxseg[c].offset);
last_slope = maxseg[c].slope;
c++;
if (nextj == rp) break;
}
if (dinit==1) inconsistent=1;
if (debug && dinit==0) printf ("mincross %f *x+ %f\n", save_min.slope, save_min.offset);
max_avail=c;
/*
* Pass 3: find the convex up envelope of s.min, composed of
* line segments in s.min vs. absolute space, which are
* points in freq vs. dt space. These points are found in
* order of decreasing slope. */
dinit=1; last_slope=+100.0;
for (c=1, j=next_up(rp); ; j=nextj) {
nextj = search(rp, j, 0, 0, 1, &minseg[c]);
search(rp, j, 1, 0, 0, &check);
if (check.slope > minseg[c].slope && check.slope < last_slope &&
(dinit || check.slope < save_max.slope)) {dinit=0; save_max=check; }
if (debug) printf("minseg[%d] = %f *x+ %f\n",
c, minseg[c].slope, minseg[c].offset);
last_slope = minseg[c].slope;
c++;
if (nextj == rp) break;
}
if (dinit==1) inconsistent=1;
if (debug && dinit==0) printf ("maxcross %f *x+ %f\n", save_max.slope, save_max.offset);
min_avail=c;
/*
* Pass 4: splice together the convex polygon that forms
* the envelope of slope/offset coordinates that are consistent
* with the observed data. The order of calls to polygon_point
* doesn't matter for the frequency shift determination, but
* the order chosen is nice for visual display. */
polygon_reset();
polygon_point(&save_min);
for (dinit=1, c=1; c<max_avail; c++) {
if (dinit && maxseg[c].slope > save_min.slope) {
max_imin = c-1;
maxseg[max_imin] = save_min;
dinit = 0;
}
if (maxseg[c].slope > save_max.slope)
break;
if (dinit==0) polygon_point(&maxseg[c]);
}
if (dinit && debug) printf("found maxseg vs. save_min inconsistency\n");
if (dinit) inconsistent=1;
max_imax = c;
maxseg[max_imax] = save_max;
polygon_point(&save_max);
for (dinit=1, c=1; c<min_avail; c++) {
if (dinit && minseg[c].slope < save_max.slope) {
max_imin = c-1;
minseg[min_imin] = save_max;
dinit = 0;
}
if (minseg[c].slope < save_min.slope)
break;
if (dinit==0) polygon_point(&minseg[c]);
}
if (dinit && debug) printf("found minseg vs. save_max inconsistency\n");
if (dinit) inconsistent=1;
min_imax = c;
minseg[min_imax] = save_max;
/* not needed for analysis, but shouldn't hurt either */
if (debug) polygon_point(&save_min);
/*
* Pass 5: decide on a new freq */
if (inconsistent) {
printf("# inconsistent\n");
} else {
delta_f = find_df(&both_sides_now);
if (debug) printf("find_df() = %e\n", delta_f);
if (both_sides_now)
delta_f = find_df_center(&save_min,&save_max);
delta_freq = delta_f*65536+.5;
if (debug) printf("delta_f %f delta_freq %d bsn %d\n", delta_f, delta_freq, both_sides_now);
computed_freq -= delta_freq;
printf ("# box [( %.3f , %.1f ) ", save_min.slope, save_min.offset);
printf ( " ( %.3f , %.1f )] ", save_max.slope, save_max.offset);
printf (" delta_f %.3f computed_freq %d\n", delta_f, computed_freq);
if (computed_freq < -6000000) computed_freq=-6000000;
if (computed_freq > 6000000) computed_freq= 6000000;
}
}
rp = (rp+1)%RING_SIZE;
return computed_freq;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -