📄 oaosvm.txt
字号:
1.oaosvm.m
% OAOSVM Multi-class SVM using One-Against-One decomposition.
%
% Synopsis:
% model = oaosvm( data )
% model = oaosvm( data, options )
%
% Description:
% model = oaosvm( data ) uses one-agains-one deconposition
% to train the multi-class Support Vector Machines (SVM)
% classifier. The classification into nclass classes
% is decomposed into nrule = (nclass-1)*nclass/2 binary
% problems.
%
% model = oaosvm( data, options) allows to specify the
% binary SVM solver and its paramaters.
%
% Input:
% data [struct] Training data:
% .X [dim x num_data] Training vectors.
% .y [1 x num_data] Labels of training data (1,2,...,nclass).
%
% options [struct] Control parameters:
% .solver [string] Function which implements the binary SVM
% solver; (default 'smo').
% .verb [1x1] If 1 then a progress info is displayed (default 0).
% The other fileds of options specifies the options of the binary
% solver (e.g., ker, arg, C). See help of the selected solver.
%
% Output:
% model [struct] Multi-class SVM majority voting classifier:
% .Alpha [nsv x nrule] Weights (Lagrangeans).
% .bin_y [2 x nrule] Translation between binary responses of
% the discriminant functions and class labels.
% .b [nrule x 1] Biases of discriminant functions.
% .sv.X [dim x nsv] Support vectors.
% .nsv [1x1] Number of support vectors.
% .trnerr [1x1] Training error.
% .kercnt [1x1] Number of kernel evaluations.
% .options [struct[ Copy of input argument options.
%
% Example:
% data = load('pentagon');
% options = struct('ker','rbf','arg',1,'C',1000,'verb',1);
% model = oaosvm( data, options );
% figure;
% ppatterns(data); ppatterns(model.sv.X,'ok',13);
% pboundary( model );
%
% See also
% MVSVMCLASS, OAASVM.
%
% About: Statistical Pattern Recognition Toolbox
% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac
% <a href="http://www.cvut.cz">Czech Technical University Prague</a>
% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>
% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>
% Modifications:
% 26-may-2004, VF
% 4-feb-2004, VF
% 9-Feb-2003, VF
% Process inputs
2.ppatterns.m
% PPATTERNS Plots pattern as points in feature space.
%
% Synopsis:
% ppatterns(data,marker_size)
% ppatterns(data,'num')
% ppatterns(X,marker,marker_size)
% ppatterns(X,y)
% ppatterns(X,y,marker_size)
% ppatterns(X,y,'num')
%
% Description:
% ppatterns(data,marker_size) plots data.X as points
% distinguished by marker and its color according to
% given labels data.y. The marker size can be prescribed.
%
% ppatterns(data,'num') plots data.X in distinguished
% by numbers and colors according to given labels data.y.
% The marker size can be determined by argument marker_size.
%
% ppatterns(X,marker,marker_size) plots data X. Marker type
% can be determined by argument marker. The marker size can
% be determined by argument marker_size.
%
% ppatterns(X,y,...) instead of structure data, which contains
% items X and y these can enter the function directly.
%
% If dimension of input data is greater than 3 then
% only first 3 dimensions are assumed and data are plotted
% in 3D space.
%
% Output:
% H [struct] Handles of used graphical objects.
%
% Example:
% data = load('riply_trn');
% figure; ppatterns(data);
% figure; ppatterns(data,'num');
% figure; ppatterns(data.X,'xk',10);
%
% See also
% PLINE.
%
% About: Statistical Pattern Recognition Toolbox
% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac
% <a href="http://www.cvut.cz">Czech Technical University Prague</a>
% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>
% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>
% Modifications:
% 25-may-2004, VF
% 11-mar-2004, VF,
% 5-oct-2003, VF, returns handles
% 12-feb-2003, VF, 1D, 3D added
% 7-jan-2003, VF, created
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -