📄 mod2dense.c
字号:
} }}/* ADD TWO DENSE MOD2 MATRICES. */void mod2dense_add( mod2dense *m1, /* Left operand of add */ mod2dense *m2, /* Right operand of add */ mod2dense *r /* Place to store result of add */){ int j, k; if (mod2dense_rows(m1)!=mod2dense_rows(r) || mod2dense_cols(m1)!=mod2dense_cols(r) || mod2dense_rows(m2)!=mod2dense_rows(r) || mod2dense_cols(m2)!=mod2dense_cols(r)) { fprintf(stderr,"mod2dense_add: Matrices have different dimensions\n"); exit(1); } for (j = 0; j<mod2dense_cols(r); j++) { for (k = 0; k<r->n_words; k++) { r->col[j][k] = m1->col[j][k] ^ m2->col[j][k]; } }}/* MULTIPLY TWO DENSE MOD2 MATRICES. The algorithm used runs faster if the second matrix (right operand of the multiply) is sparse, but it is also appropriate for dense matrices. This procedure could be speeded up a bit by replacing the call of mod2dense_get with in-line code that avoids division, but this doesn't seem worthwhile at the moment. */void mod2dense_multiply ( mod2dense *m1, /* Left operand of multiply */ mod2dense *m2, /* Right operand of multiply */ mod2dense *r /* Place to store result of multiply */){ int i, j, k; if (mod2dense_cols(m1)!=mod2dense_rows(m2) || mod2dense_rows(m1)!=mod2dense_rows(r) || mod2dense_cols(m2)!=mod2dense_cols(r)) { fprintf(stderr, "mod2dense_multiply: Matrices have incompatible dimensions\n"); exit(1); } if (r==m1 || r==m2) { fprintf(stderr, "mod2dense_multiply: Result matrix is the same as one of the operands\n"); exit(1); } mod2dense_clear(r); for (j = 0; j<mod2dense_cols(r); j++) { for (i = 0; i<mod2dense_rows(m2); i++) { if (mod2dense_get(m2,i,j)) { for (k = 0; k<r->n_words; k++) { r->col[j][k] ^= m1->col[i][k]; } } } }}/* SEE WHETHER TWO DENSE MOD2 MATRICES ARE EQUAL. */int mod2dense_equal( mod2dense *m1, mod2dense *m2){ int k, j, w; mod2word m; if (mod2dense_rows(m1)!=mod2dense_rows(m2) || mod2dense_cols(m1)!=mod2dense_cols(m2)) { fprintf(stderr,"mod2dense_equal: Matrices have different dimensions\n"); exit(1); } w = m1->n_words; /* Form a mask that has 1s in the lower bit positions corresponding to bits that contain information in the last word of a matrix column. */ m = (1 << (mod2_wordsize - (w*mod2_wordsize-m1->n_rows))) - 1; for (j = 0; j<mod2dense_cols(m1); j++) { for (k = 0; k<w-1; k++) { if (m1->col[j][k] != m2->col[j][k]) return 0; } if ((m1->col[j][k]&m) != (m2->col[j][k]&m)) return 0; } return 1;}/* INVERT A DENSE MOD2 MATRIX. */int mod2dense_invert ( mod2dense *m, /* The matrix to find the inverse of (destroyed) */ mod2dense *r /* Place to store the inverse */){ mod2word *s, *t; int i, j, k, n, w, k0, b0; if (mod2dense_rows(m)!=mod2dense_cols(m)) { fprintf(stderr,"mod2dense_invert: Matrix to invert is not square\n"); exit(1); } if (r==m) { fprintf(stderr, "mod2dense_invert: Result matrix is the same as the operand\n"); exit(1); } n = mod2dense_rows(m); w = m->n_words; if (mod2dense_rows(r)!=n || mod2dense_cols(r)!=n) { fprintf(stderr, "mod2dense_invert: Matrix to receive inverse has wrong dimensions\n"); exit(1); } mod2dense_clear(r); for (i = 0; i<n; i++) { mod2dense_set(r,i,i,1); } for (i = 0; i<n; i++) { k0 = i >> mod2_wordsize_shift; b0 = i & mod2_wordsize_mask; for (j = i; j<n; j++) { if (mod2_getbit(m->col[j][k0],b0)) break; } if (j==n) return 0; if (j!=i) { t = m->col[i]; m->col[i] = m->col[j]; m->col[j] = t; t = r->col[i]; r->col[i] = r->col[j]; r->col[j] = t; } for (j = 0; j<n; j++) { if (j!=i && mod2_getbit(m->col[j][k0],b0)) { s = m->col[j]; t = m->col[i]; for (k = k0; k<w; k++) s[k] ^= t[k]; s = r->col[j]; t = r->col[i]; for (k = 0; k<w; k++) s[k] ^= t[k]; } } } return 1;}/* INVERT A DENSE MOD2 MATRIX WITH ROWS & COLUMNS SELECTED FROM BIGGER MATRIX.*/int mod2dense_invert_selected( mod2dense *m, /* Matrix from which to pick a submatrix to invert */ mod2dense *r, /* Place to store the inverse */ int *rows, /* Set to indexes of rows used and not used */ int *cols /* Set to indexes of columns used and not used */){ mod2word *s, *t; int i, j, k, n, n2, w, k0, b0, c, R; if (r==m) { fprintf(stderr, "mod2dense_invert_selected2: Result matrix is the same as the operand\n"); exit(1); } n = mod2dense_rows(m); w = m->n_words; n2 = mod2dense_cols(m); if (mod2dense_rows(r)!=n || mod2dense_cols(r)!=n2) { fprintf(stderr,"mod2dense_invert_selected2: Matrix to receive inverse has wrong dimensions\n"); exit(1); } mod2dense_clear(r); for (i = 0; i<n; i++) { rows[i] = i; } for (j = 0; j<n2; j++) { cols[j] = j; } R = 0; i = 0; for (;;) { while (i<n-R) { k0 = rows[i] >> mod2_wordsize_shift; b0 = rows[i] & mod2_wordsize_mask; for (j = i; j<n2; j++) { if (mod2_getbit(m->col[cols[j]][k0],b0)) break; } if (j<n2) break; R += 1; c = rows[i]; rows[i] = rows[n-R]; rows[n-R] = c; } if (i==n-R) break; c = cols[j]; cols[j] = cols[i]; cols[i] = c; mod2dense_set(r,rows[i],c,1); for (j = 0; j<n2; j++) { if (j!=c && mod2_getbit(m->col[j][k0],b0)) { s = m->col[j]; t = m->col[c]; for (k = 0; k<w; k++) s[k] ^= t[k]; s = r->col[j]; t = r->col[c]; for (k = 0; k<w; k++) s[k] ^= t[k]; } } i += 1; } for (j = n-R; j<n; j++) { s = r->col[cols[j]]; for (k = 0; k<w; k++) s[k] = 0; } return R;}/* FORCIBLY INVERT A DENSE MOD2 MATRIX. */int mod2dense_forcibly_invert ( mod2dense *m, /* The matrix to find the inverse of (destroyed) */ mod2dense *r, /* Place to store the inverse */ int *a_row, /* Place to store row indexes of altered elements */ int *a_col /* Place to store column indexes of altered elements */){ mod2word *s, *t; int i, j, k, n, w, k0, b0; int u, c; if (mod2dense_rows(m)!=mod2dense_cols(m)) { fprintf(stderr, "mod2dense_forcibly_invert: Matrix to invert is not square\n"); exit(1); } if (r==m) { fprintf(stderr, "mod2dense_forcibly_invert: Result matrix is the same as the operand\n"); exit(1); } n = mod2dense_rows(m); w = m->n_words; if (mod2dense_rows(r)!=n || mod2dense_cols(r)!=n) { fprintf(stderr, "mod2dense_forcibly_invert: Matrix to receive inverse has wrong dimensions\n"); exit(1); } mod2dense_clear(r); for (i = 0; i<n; i++) { mod2dense_set(r,i,i,1); } for (i = 0; i<n; i++) { a_row[i] = -1; a_col[i] = i; } for (i = 0; i<n; i++) { k0 = i >> mod2_wordsize_shift; b0 = i & mod2_wordsize_mask; for (j = i; j<n; j++) { if (mod2_getbit(m->col[j][k0],b0)) break; } if (j==n) { j = i; mod2dense_set(m,i,j,1); a_row[i] = i; } if (j!=i) { t = m->col[i]; m->col[i] = m->col[j]; m->col[j] = t; t = r->col[i]; r->col[i] = r->col[j]; r->col[j] = t; u = a_col[i]; a_col[i] = a_col[j]; a_col[j] = u; } for (j = 0; j<n; j++) { if (j!=i && mod2_getbit(m->col[j][k0],b0)) { s = m->col[j]; t = m->col[i]; for (k = k0; k<w; k++) s[k] ^= t[k]; s = r->col[j]; t = r->col[i]; for (k = 0; k<w; k++) s[k] ^= t[k]; } } } c = 0; for (i = 0; i<n; i++) { if (a_row[i]!=-1) { a_row[c] = a_row[i]; a_col[c] = a_col[i]; c += 1; } } return c;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -