⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 distmaha.m

📁 模式识别工具包
💻 M
字号:
%DISTMAHA Mahalanobis distance% % 	D = distmaha(A,U,G)% % Computation of the Mahanalobis distances of all vectors in the % dataset A to a dataset of points U, using the covariance matrix G. % G should be either a 2-dimensional square matrix of the right size % or a 3-dimensional matrix containing a covariance matrix for each % point in U. If A contains m vectors and U n vectors, the size of D % is m*n.% % 	D = distmaha(A)% % Estimation of the Mahalanobis distance matrix between all classes % in the set of data vectors in A defined by labels.% % See also datasets% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction D = distmaha(X,U,G);[nlab,lablist,m,k,c,p] = dataset(X);if nargin == 1     % distance matrix between data classes	U = zeros(c,k);	for i = 1:c		J = find(nlab == i);		U(i,:) = mean(X(J,:));		X(J,:) = X(J,:) - ones(length(J),1)*U(i,:);	end 	[E,V] = eig(covm(X));	U = U*E*sqrt(inv(V));	D = distm(U);elseif nargin == 2	D = distm(U,X);elseif nargin == 3     % distance between data and distribution	[k1,k2,cg] = size(G);	[cu,k3] = size(U);	if isa(U,'dataset')		labels = getlab(U);	else		labels = [1:cu]';	end	if any([k1,k2,k3] ~= k) | (cu ~= cg & cg ~= 1)		error('Data size do not match')	end		D = zeros(m,cu);	if cg == 1, F = inv(G); end	for j=1:cu		if cg ~=1, F = inv(G(:,:,j)); end		D(:,j) = sum((X-repmat(+U(j,:),m,1))'.*(F*(X-repmat(+U(j,:),m,1))'),1)';	end        D = dataset(D,getlab(X),labels,p,lablist);else	error('Wrong number of arguments')end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -