📄 svm.m
字号:
%SVM Support vector mapping, kernel PCA% % W = svm(A,type,p,n);% % Computes support vector mapping W from the data vectors in A % depending on the value of type:% 'p': polynomial on inner products with degree p% 'e': exponential, scaled by p% 'r': Gaussian radial_basis functions with given stand. dev. p% 's': sigmoid functions on inner products with given scaling p% 'd': Euclidean distance ^ p% % If n is given, the mapping is afterwards reduced to n dimensions % by a Karhunen-Loeve reduction (kernel PCA). New objects B can be % mapped by B*W, W*B or by A*svm([],...)*B.% % Defaults: type = 'd', p = 1.% % See also datasets, mapppings, proxm, klm% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction w = svm(a,type,p,n);if nargin < 4; n = []; endif nargin < 3; p = 1; endif nargin < 2; type = 'd'; endif nargin < 1 | isempty(a) w = mapping('svm',{type,p,n}); returnend[m,k] = size(a);if strcmp(type,'s') | strcmp(type,'p') u = mean(a,1); aa = a - ones(m,1)*u;else aa = a; u = [];endw = mapping('support-vector',{u,aa},getlab(a),k,m,1,{type,p});if ~isempty(n) w = w*klms(a*w,n);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -