⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 c45pruneabledeclist.java

📁 weka 源代码很好的 对于学习 数据挖掘算法很有帮助
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    C45PruneableDecList.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.j48;import weka.core.*;/** * Class for handling a partial tree structure pruned using C4.5's * pruning heuristic. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.4 $ */public class C45PruneableDecList extends ClassifierDecList{      /** CF */  private double CF = 0.25;  /** Minimum number of objects */  private int minNumObj;  /** To compute the entropy. */  private static EntropySplitCrit splitCrit = new EntropySplitCrit();    /**   * Constructor for pruneable tree structure. Stores reference   * to associated training data at each node.   *   * @param toSelectLocModel selection method for local splitting model   * @param cf the confidence factor for pruning   * @param minNum the minimum number of objects in a leaf   * @exception Exception if something goes wrong   */  public C45PruneableDecList(ModelSelection toSelectLocModel, 			     double cf, int minNum)        throws Exception {			           super(toSelectLocModel);        CF = cf;    minNumObj = minNum;  }    /**   * Method for building a pruned partial tree.   *   * @exception Exception if something goes wrong   */  public void buildRule(Instances data) throws Exception {        buildDecList(data, false);    cleanup(new Instances(data, 0));  }    /**   * Method for choosing a subset to expand.   */  public final int chooseIndex() {        int minIndex = -1;    double estimated, min = Double.MAX_VALUE;    int i, j;    for (i = 0; i < m_sons.length; i++)      if (son(i) == null) {	if (Utils.sm(localModel().distribution().perBag(i),		     (double)minNumObj))	  estimated = Double.MAX_VALUE;	else{	  estimated = 0;	  for (j = 0; j < localModel().distribution().numClasses(); j++) 	    estimated -= splitCrit.logFunc(localModel().distribution().				     perClassPerBag(i,j));	  estimated += splitCrit.logFunc(localModel().distribution().				   perBag(i));	  estimated /= localModel().distribution().perBag(i);	}	if (Utils.smOrEq(estimated,0))	  return i;	if (Utils.sm(estimated,min)) {	  min = estimated;	  minIndex = i;	}      }    return minIndex;  }    /**   * Choose last index (ie. choose rule).   */  public final int chooseLastIndex() {        int minIndex = 0;    double estimated, min = Double.MAX_VALUE;        if (!m_isLeaf)       for (int i = 0; i < m_sons.length; i++)	if (son(i) != null) {	  if (Utils.grOrEq(localModel().distribution().perBag(i),			   (double)minNumObj)) {	    estimated = son(i).getSizeOfBranch();	    if (Utils.sm(estimated,min)) {	      min = estimated;	      minIndex = i;	    }	  }	}    return minIndex;  }    /**   * Returns a newly created tree.   *   * @exception Exception if something goes wrong   */  protected ClassifierDecList getNewDecList(Instances data, boolean leaf)        throws Exception {	     C45PruneableDecList newDecList =       new C45PruneableDecList(m_toSelectModel,CF, minNumObj);        newDecList.buildDecList((Instances)data, leaf);        return newDecList;  }  /**   * Prunes the end of the rule.   */  protected void pruneEnd() {        double errorsLeaf, errorsTree;        errorsTree = getEstimatedErrorsForTree();    errorsLeaf = getEstimatedErrorsForLeaf();    if (Utils.smOrEq(errorsLeaf,errorsTree+0.1)) { // +0.1 as in C4.5      m_isLeaf = true;      m_sons = null;      m_localModel = new NoSplit(localModel().distribution());    }  }    /**   * Computes estimated errors for tree.   */  private double getEstimatedErrorsForTree() {    if (m_isLeaf)      return getEstimatedErrorsForLeaf();    else {      double error = 0;      for (int i = 0; i < m_sons.length; i++) 	if (!Utils.eq(son(i).localModel().distribution().total(),0))	  error += son(i).getEstimatedErrorsForTree();      return error;    }  }    /**   * Computes estimated errors for leaf.   */  public double getEstimatedErrorsForLeaf() {      double errors = localModel().distribution().numIncorrect();    return errors+Stats.addErrs(localModel().distribution().total(),				errors,(float)CF);  }   /**   * Returns the number of instances covered by a branch   */  private double getSizeOfBranch() {        if (m_isLeaf) {      return -localModel().distribution().total();    } else      return son(indeX).getSizeOfBranch();  }  /**   * Method just exists to make program easier to read.   */  private ClassifierSplitModel localModel() {        return (ClassifierSplitModel)m_localModel;  }    /**   * Method just exists to make program easier to read.   */  private C45PruneableDecList son(int index) {        return (C45PruneableDecList)m_sons[index];  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -