⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pruneabledeclist.java

📁 weka 源代码很好的 对于学习 数据挖掘算法很有帮助
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    PruneableDecList.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.j48;import weka.core.*;/** * Class for handling a partial tree structure that * can be pruned using a pruning set. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.4 $ */public class PruneableDecList extends ClassifierDecList{  /** Minimum number of objects */  private int m_MinNumObj;   /** To compute the entropy. */  private static EntropySplitCrit m_splitCrit = new EntropySplitCrit();    /**   * Constructor for pruneable partial tree structure.    *   * @param toSelectLocModel selection method for local splitting model   * @param minNum minimum number of objects in leaf   */  public PruneableDecList(ModelSelection toSelectLocModel,			  int minNum) {			           super(toSelectLocModel);    m_MinNumObj = minNum;  }    /**   * Method for building a pruned partial tree.   *   * @exception Exception if tree can't be built successfully   */  public void buildRule(Instances train,			Instances test) throws Exception {         buildDecList(train, test, false);    cleanup(new Instances(train, 0));  }    /**   * Method for choosing a subset to expand.   */  public final int chooseIndex() {        int minIndex = -1;    double estimated, min = Double.MAX_VALUE;    int i, j;    for (i = 0; i < m_sons.length; i++)      if (son(i) == null){	if (Utils.sm(localModel().distribution().perBag(i),		     (double)m_MinNumObj))	  estimated = Double.MAX_VALUE;	else{	  estimated = 0;	  for (j = 0; j < localModel().distribution().numClasses(); j++) 	    estimated -= m_splitCrit.logFunc(localModel().distribution().				     perClassPerBag(i,j));	  estimated += m_splitCrit.logFunc(localModel().distribution().				   perBag(i));	  estimated /= localModel().distribution().perBag(i);	}	if (Utils.smOrEq(estimated,0)) // This is certainly a good one.	  return i;	if (Utils.sm(estimated,min)){	  min = estimated;	  minIndex = i;	}      }    return minIndex;  }    /**   * Choose last index (ie. choose rule).   */  public final int chooseLastIndex() {        int minIndex = 0;    double estimated, min = Double.MAX_VALUE;        if (!m_isLeaf)       for (int i = 0; i < m_sons.length; i++)	if (son(i) != null){	  if (Utils.grOrEq(localModel().distribution().perBag(i),			   (double)m_MinNumObj)) {	    estimated = son(i).getSizeOfBranch();	    if (Utils.sm(estimated,min)){	      min = estimated;	      minIndex = i;	    }	  }	}    return minIndex;  }    /**   * Returns a newly created tree.   *   * @param data and selection method for local models.   * @exception Exception if something goes wrong   */  protected ClassifierDecList getNewDecList(Instances train, Instances test, 					    boolean leaf) throws Exception {	     PruneableDecList newDecList =       new PruneableDecList(m_toSelectModel, m_MinNumObj);        newDecList.buildDecList((Instances)train, test, leaf);        return newDecList;  }  /**   * Prunes the end of the rule.   */  protected void pruneEnd() throws Exception {        double errorsLeaf, errorsTree;        errorsTree = errorsForTree();    errorsLeaf = errorsForLeaf();    if (Utils.smOrEq(errorsLeaf,errorsTree)){       m_isLeaf = true;      m_sons = null;      m_localModel = new NoSplit(localModel().distribution());    }  }  /**   * Computes error estimate for tree.   */  private double errorsForTree() throws Exception {    Distribution test;    if (m_isLeaf)      return errorsForLeaf();    else {      double error = 0;      for (int i = 0; i < m_sons.length; i++) 	if (Utils.eq(son(i).localModel().distribution().total(),0)) {	  error += m_test.perBag(i)-	    m_test.perClassPerBag(i,localModel().distribution().				maxClass());	} else	  error += son(i).errorsForTree();      return error;    }  }  /**   * Computes estimated errors for leaf.   */  private double errorsForLeaf() throws Exception {    return m_test.total()-	    m_test.perClass(localModel().distribution().maxClass());  }   /**   * Returns the number of instances covered by a branch   */  private double getSizeOfBranch() {        if (m_isLeaf) {      return -localModel().distribution().total();    } else      return son(indeX).getSizeOfBranch();  }  /**   * Method just exists to make program easier to read.   */  private ClassifierSplitModel localModel() {        return (ClassifierSplitModel)m_localModel;  }    /**   * Method just exists to make program easier to read.   */  private PruneableDecList son(int index) {        return (PruneableDecList)m_sons[index];  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -