⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 infogainsplitcrit.java

📁 weka 源代码很好的 对于学习 数据挖掘算法很有帮助
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    InfoGainSplitCrit.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.j48;import weka.core.*;/** * Class for computing the information gain for a given distribution. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.5 $ */public final class InfoGainSplitCrit extends EntropyBasedSplitCrit{  /**   * This method is a straightforward implementation of the information   * gain criterion for the given distribution.   */  public final double splitCritValue(Distribution bags) {    double numerator;            numerator = oldEnt(bags)-newEnt(bags);    // Splits with no gain are useless.    if (Utils.eq(numerator,0))      return Double.MAX_VALUE;            // We take the reciprocal value because we want to minimize the    // splitting criterion's value.    return bags.total()/numerator;  }  /**   * This method computes the information gain in the same way    * C4.5 does.   *   * @param distribution the distribution   * @param totalNoInst weight of ALL instances (including the   * ones with missing values).   */  public final double splitCritValue(Distribution bags,double totalNoInst) {        double numerator;    double noUnknown;    double unknownRate;    int i;        noUnknown = totalNoInst-bags.total();    unknownRate = noUnknown/totalNoInst;    numerator = (oldEnt(bags)-newEnt(bags));    numerator = (1-unknownRate)*numerator;        // Splits with no gain are useless.    if (Utils.eq(numerator,0))      return 0;        return numerator/bags.total();  }  /**   * This method computes the information gain in the same way    * C4.5 does.   *   * @param distribution the distribution   * @param totalNoInst weight of ALL instances    * @param oldEnt entropy with respect to "no-split"-model.   */  public final double splitCritValue(Distribution bags,double totalNoInst,                                     double oldEnt) {        double numerator;    double noUnknown;    double unknownRate;    int i;        noUnknown = totalNoInst-bags.total();    unknownRate = noUnknown/totalNoInst;    numerator = (oldEnt-newEnt(bags));    numerator = (1-unknownRate)*numerator;        // Splits with no gain are useless.    if (Utils.eq(numerator,0))      return 0;        return numerator/bags.total();  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -