⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 part.java

📁 weka 源代码很好的 对于学习 数据挖掘算法很有帮助
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    PART.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.j48;import java.util.*;import weka.core.*;import weka.classifiers.*;/** * Class for generating a PART decision list. For more information, see<p> * * Eibe Frank and Ian H. Witten (1998).  <a * href="http://www.cs.waikato.ac.nz/~eibe/pubs/ML98-57.ps.gz">Generating * Accurate Rule Sets Without Global Optimization.</a> In Shavlik, J., * ed., <i>Machine Learning: Proceedings of the Fifteenth * International Conference</i>, Morgan Kaufmann Publishers, San * Francisco, CA. <p> * * Valid options are: <p> * * -C confidence <br> * Set confidence threshold for pruning. (Default: 0.25) <p> * * -M number <br> * Set minimum number of instances per leaf. (Default: 2) <p> * * -R <br> * Use reduced error pruning. <p> * * -N number <br> * Set number of folds for reduced error pruning. One fold is * used as the pruning set. (Default: 3) <p> * * -B <br> * Use binary splits for nominal attributes. <p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.14 $ */public class PART extends DistributionClassifier implements OptionHandler,  WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer {  /** The decision list */  private MakeDecList m_root;  /** Confidence level */  private float m_CF = 0.25f;  /** Minimum number of objects */  private int m_minNumObj = 2;  /** Use reduced error pruning? */  private boolean m_reducedErrorPruning = false;  /** Number of folds for reduced error pruning. */  private int m_numFolds = 3;  /** Binary splits on nominal attributes? */  private boolean m_binarySplits = false;    /**   * Generates the classifier.   *   * @exception Exception if classifier can't be built successfully   */  public void buildClassifier(Instances instances)        throws Exception{    ModelSelection modSelection;	     if (m_binarySplits)      modSelection = new BinC45ModelSelection(m_minNumObj, instances);    else      modSelection = new C45ModelSelection(m_minNumObj, instances);    if (m_reducedErrorPruning)       m_root = new MakeDecList(modSelection, m_numFolds, m_minNumObj);    else      m_root = new MakeDecList(modSelection, m_CF, m_minNumObj);    m_root.buildClassifier(instances);    if (m_binarySplits) {      ((BinC45ModelSelection)modSelection).cleanup();    } else {      ((C45ModelSelection)modSelection).cleanup();    }  }  /**   * Classifies an instance.   *   * @exception Exception if instance can't be classified successfully   */  public double classifyInstance(Instance instance)        throws Exception {    return m_root.classifyInstance(instance);  }  /**    * Returns class probabilities for an instance.   *   * @exception Exception if the distribution can't be computed successfully   */  public final double [] distributionForInstance(Instance instance)        throws Exception {    return m_root.distributionForInstance(instance);  }  /**   * Returns an enumeration describing the available options   *   * Valid options are: <p>   *   * -C confidence <br>   * Set confidence threshold for pruning. (Default: 0.25) <p>   *   * -M number <br>   * Set minimum number of instances per leaf. (Default: 2) <p>   *   * -R <br>   * Use reduced error pruning. <p>   *   * -N number <br>   * Set number of folds for reduced error pruning. One fold is   * used as the pruning set. (Default: 3) <p>   *   * -B <br>   * Use binary splits for nominal attributes. <p>   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector newVector = new Vector(5);    newVector.	addElement(new Option("\tSet confidence threshold for pruning.\n" +			      "\t(default 0.25)",			      "C", 1, "-C <pruning confidence>"));    newVector.	addElement(new Option("\tSet minimum number of objects per leaf.\n" +			      "\t(default 2)",			      "M", 1, "-M <minimum number of objects>"));    newVector.	addElement(new Option("\tUse reduced error pruning.",			      "R", 0, "-R"));    newVector.	addElement(new Option("\tSet number of folds for reduced error\n" +			      "\tpruning. One fold is used as pruning set.\n" +			      "\t(default 3)",			      "N", 1, "-N <number of folds>"));    newVector.	addElement(new Option("\tUse binary splits only.",			      "B", 0, "-B"));    return newVector.elements();  }  /**   * Parses a given list of options.   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception{    // Pruning options    m_reducedErrorPruning = Utils.getFlag('R', options);    m_binarySplits = Utils.getFlag('B', options);    String confidenceString = Utils.getOption('C', options);    if (confidenceString.length() != 0) {      if (m_reducedErrorPruning) {	throw new Exception("Setting CF doesn't make sense " +			    "for reduced error pruning.");      } else {	m_CF = (new Float(confidenceString)).floatValue();	if ((m_CF <= 0) || (m_CF >= 1)) {	  throw new Exception("CF has to be greater than zero and smaller than one!");	}       }    } else {      m_CF = 0.25f;    }    String numFoldsString = Utils.getOption('N', options);    if (numFoldsString.length() != 0) {      if (!m_reducedErrorPruning) {	throw new Exception("Setting the number of folds" +			    " does only make sense for" +			    " reduced error pruning.");      } else {	m_numFolds = Integer.parseInt(numFoldsString);      }    } else {      m_numFolds = 3;    }    // Other options    String minNumString = Utils.getOption('M', options);    if (minNumString.length() != 0) {      m_minNumObj = Integer.parseInt(minNumString);    } else {      m_minNumObj = 2;    }  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [6];    int current = 0;    if (m_reducedErrorPruning) {      options[current++] = "-R";      options[current++] = "-N"; options[current++] = "" + m_numFolds;    } else {      options[current++] = "-C"; options[current++] = "" + m_CF;    }    if (m_binarySplits) {      options[current++] = "-B";    }    options[current++] = "-M"; options[current++] = "" + m_minNumObj;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns a description of the classifier   */  public String toString() {    if (m_root == null) {      return "No classifier built";    }    return "PART decision list\n------------------\n\n" + m_root.toString();  }    /**   * Returns a superconcise version of the model   */  public String toSummaryString() {    return "Number of rules: " + m_root.numRules() + "\n";  }    /**   * Return the number of rules.   * @return the number of rules   */  public double measureNumRules() {    return m_root.numRules();  }    /**   * Returns an enumeration of the additional measure names   * @return an enumeration of the measure names   */  public Enumeration enumerateMeasures() {    Vector newVector = new Vector(1);    newVector.addElement("measureNumRules");    return newVector.elements();  }  /**   * Returns the value of the named measure   * @param measureName the name of the measure to query for its value   * @return the value of the named measure   * @exception IllegalArgumentException if the named measure is not supported   */  public double getMeasure(String additionalMeasureName) {    if (additionalMeasureName.compareTo("measureNumRules") == 0) {      return measureNumRules();    } else {      throw new IllegalArgumentException(additionalMeasureName 			  + " not supported (PART)");    }  }  /**   * Get the value of CF.   *   * @return Value of CF.   */  public float getConfidenceFactor() {        return m_CF;  }    /**   * Set the value of CF.   *   * @param v  Value to assign to CF.   */  public void setConfidenceFactor(float v) {        m_CF = v;  }    /**   * Get the value of minNumObj.   *   * @return Value of minNumObj.   */  public int getMinNumObj() {        return m_minNumObj;  }    /**   * Set the value of minNumObj.   *   * @param v  Value to assign to minNumObj.   */  public void setMinNumObj(int v) {        m_minNumObj = v;  }    /**   * Get the value of reducedErrorPruning.   *   * @return Value of reducedErrorPruning.   */  public boolean getReducedErrorPruning() {        return m_reducedErrorPruning;  }    /**   * Set the value of reducedErrorPruning.   *   * @param v  Value to assign to reducedErrorPruning.   */  public void setReducedErrorPruning(boolean v) {        m_reducedErrorPruning = v;  }    /**   * Get the value of numFolds.   *   * @return Value of numFolds.   */  public int getNumFolds() {        return m_numFolds;  }    /**   * Set the value of numFolds.   *   * @param v  Value to assign to numFolds.   */  public void setNumFolds(int v) {        m_numFolds = v;  }    /**   * Get the value of binarySplits.   *   * @return Value of binarySplits.   */  public boolean getBinarySplits() {        return m_binarySplits;  }    /**   * Set the value of binarySplits.   *   * @param v  Value to assign to binarySplits.   */  public void setBinarySplits(boolean v) {        m_binarySplits = v;  }    /**   * Main method for testing this class.   *   * @param String options    */  public static void main(String [] argv){    try {      System.out.println(Evaluation.evaluateModel(new PART(), argv));    } catch (Exception e) {      System.out.println(e.getMessage());    }  }}  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -