⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 entropysplitcrit.java

📁 weka 源代码很好的 对于学习 数据挖掘算法很有帮助
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    EntropySplitCrit.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.j48;import weka.core.*;/** * Class for computing the entropy for a given distribution. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.4 $ */public final class EntropySplitCrit extends EntropyBasedSplitCrit {  /**   * Computes entropy for given distribution.   */  public final double splitCritValue(Distribution bags) {        return newEnt(bags);  }  /**   * Computes entropy of test distribution with respect to training distribution.   */  public final double splitCritValue(Distribution train, Distribution test) {    double result = 0;    int numClasses = 0;    int i, j;        // Find out relevant number of classes    for (j = 0; j < test.numClasses(); j++)      if (Utils.gr(train.perClass(j), 0) || Utils.gr(test.perClass(j), 0))	numClasses++;    // Compute entropy of test data with respect to training data    for (i = 0; i < test.numBags(); i++)      if (Utils.gr(test.perBag(i),0)) {	for (j = 0; j < test.numClasses(); j++)	  if (Utils.gr(test.perClassPerBag(i, j), 0))	    result -= test.perClassPerBag(i, j)*	      Math.log(train.perClassPerBag(i, j) + 1);	result += test.perBag(i) * Math.log(train.perBag(i) + numClasses);      }      return result / log2;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -