⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 twoclassstats.java

📁 weka 源代码很好的 对于学习 数据挖掘算法很有帮助
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    TwoClassStats.java *    Copyright (C) 2000 Intelligenesis Corp. * */package weka.classifiers.evaluation;/** * Encapsulates performance functions for two-class problems. * * @author Len Trigg (len@intelligenesis.net) * @version $Revision: 1.5 $ */public class TwoClassStats {  /** The names used when converting this object to a confusion matrix */  private final static String [] CATEGORY_NAMES = {"negative", "positive"};  /** Pos predicted as pos */  private double m_TruePos;  /** Neg predicted as pos */  private double m_FalsePos;  /** Neg predicted as neg */  private double m_TrueNeg;  /** Pos predicted as neg */  private double m_FalseNeg;  /**   * Creates the TwoClassStats with the given initial performance values.   *   * @param tp the number of correctly classified positives   * @param fp the number of incorrectly classified negatives   * @param tn the number of correctly classified negatives   * @param fn the number of incorrectly classified positives   */  public TwoClassStats(double tp, double fp, double tn, double fn) {          setTruePositive(tp);     setFalsePositive(fp);    setTrueNegative(tn);     setFalseNegative(fn);  }  /** Sets the number of positive instances predicted as positive */  public void setTruePositive(double tp) { m_TruePos = tp; }  /** Sets the number of negative instances predicted as positive */  public void setFalsePositive(double fp) { m_FalsePos = fp; }  /** Sets the number of negative instances predicted as negative */  public void setTrueNegative(double tn) { m_TrueNeg = tn; }  /** Sets the number of positive instances predicted as negative */  public void setFalseNegative(double fn) { m_FalseNeg = fn; }  /** Gets the number of positive instances predicted as positive */  public double getTruePositive() { return m_TruePos; }  /** Gets the number of negative instances predicted as positive */  public double getFalsePositive() { return m_FalsePos; }  /** Gets the number of negative instances predicted as negative */  public double getTrueNegative() { return m_TrueNeg; }  /** Gets the number of positive instances predicted as negative */  public double getFalseNegative() { return m_FalseNeg; }  /**   * Calculate the true positive rate.    * This is defined as<p>   * <pre>   * correctly classified positives   * ------------------------------   *       total positives   * </pre>   *   * @return the true positive rate   */  public double getTruePositiveRate() {     if (0 == (m_TruePos + m_FalseNeg)) {      return 0;    } else {      return m_TruePos / (m_TruePos + m_FalseNeg);     }  }  /**   * Calculate the false positive rate.    * This is defined as<p>   * <pre>   * incorrectly classified negatives   * --------------------------------   *        total negatives   * </pre>   *   * @return the false positive rate   */  public double getFalsePositiveRate() {     if (0 == (m_FalsePos + m_TrueNeg)) {      return 0;    } else {      return m_FalsePos / (m_FalsePos + m_TrueNeg);     }  }  /**   * Calculate the precision.    * This is defined as<p>   * <pre>   * correctly classified positives   * ------------------------------   *  total predicted as positive   * </pre>   *   * @return the precision   */  public double getPrecision() {     if (0 == (m_TruePos + m_FalsePos)) {      return 0;    } else {      return m_TruePos / (m_TruePos + m_FalsePos);     }  }  /**   * Calculate the recall.    * This is defined as<p>   * <pre>   * correctly classified positives   * ------------------------------   *       total positives   * </pre><p>   * (Which is also the same as the truePositiveRate.)   *   * @return the recall   */  public double getRecall() { return getTruePositiveRate(); }  /**   * Calculate the F-Measure.    * This is defined as<p>   * <pre>   * 2 * recall * precision   * ----------------------   *   recall + precision   * </pre>   *   * @return the F-Measure   */  public double getFMeasure() {    double precision = getPrecision();    double recall = getRecall();    if ((precision + recall) == 0) {      return 0;    }    return 2 * precision * recall / (precision + recall);  }  /**   * Calculate the fallout.    * This is defined as<p>   * <pre>   * incorrectly classified negatives   * --------------------------------   *   total predicted as positive   * </pre>   *   * @return the fallout   */  public double getFallout() {     if (0 == (m_TruePos + m_FalsePos)) {      return 0;    } else {      return m_FalsePos / (m_TruePos + m_FalsePos);     }  }  /**   * Generates a <code>ConfusionMatrix</code> representing the current   * two-class statistics, using class names "negative" and "positive".   *   * @return a <code>ConfusionMatrix</code>.   */  public ConfusionMatrix getConfusionMatrix() {    ConfusionMatrix cm = new ConfusionMatrix(CATEGORY_NAMES);    cm.setElement(0, 0, m_TrueNeg);    cm.setElement(0, 1, m_FalsePos);    cm.setElement(1, 0, m_FalseNeg);    cm.setElement(1, 1, m_TruePos);    return cm;  }  /**   * Returns a string containing the various performance measures   * for the current object    */  public String toString() {    StringBuffer res = new StringBuffer();    res.append(getTruePositive()).append(' ');    res.append(getFalseNegative()).append(' ');    res.append(getTrueNegative()).append(' ');    res.append(getFalsePositive()).append(' ');    res.append(getFalsePositiveRate()).append(' ');    res.append(getTruePositiveRate()).append(' ');    res.append(getPrecision()).append(' ');    res.append(getRecall()).append(' ');    res.append(getFMeasure()).append(' ');    res.append(getFallout()).append(' ');    return res.toString();  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -