⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rc24g.c

📁 M8控制cc2500,usb无线接口
💻 C
📖 第 1 页 / 共 2 页
字号:
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/eeprom.h>
#include <avr/sleep.h>
#include <util/delay.h>
#include <util/crc16.h>
#include <inttypes.h>

#define SEL_HI()	PORTB |= _BV(PB2)
#define SEL_LO()	PORTB &= ~_BV(PB2)

#define MAX_CHANNELS	4
#define PACKAGE_LEN		6

#define SETTING			1					// 设置中
#define SAVESETTING		2					// 保存数据到E2PROM	

#define SPI_WAIT()		while (!(SPSR & (1<< SPIF)))

// CC2500 状态
#define CCxxx0_Ready()	PINB & _BV(PB4)
#define CRC_OK              0x80  
#define BYTES_IN_RXFIFO     0x7F 
#define STATE_IDLE			0x01

// Definitions to support burst/single access:
#define WRITE_BURST     0x40
#define READ_SINGLE     0x80
#define READ_BURST      0xC0

// CC2500/CC1100 STROBE, CONTROL AND STATUS REGSITER
#define CCxxx0_IOCFG2       0x00        // GDO2 output pin configuration
#define CCxxx0_IOCFG1       0x01        // GDO1 output pin configuration
#define CCxxx0_IOCFG0       0x02        // GDO0 output pin configuration
#define CCxxx0_FIFOTHR      0x03        // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1        0x04        // Sync word, high byte
#define CCxxx0_SYNC0        0x05        // Sync word, low byte
#define CCxxx0_PKTLEN       0x06        // Packet length
#define CCxxx0_PKTCTRL1     0x07        // Packet automation control
#define CCxxx0_PKTCTRL0     0x08        // Packet automation control
#define CCxxx0_ADDR         0x09        // Device address
#define CCxxx0_CHANNR       0x0A        // Channel number
#define CCxxx0_FSCTRL1      0x0B        // Frequency synthesizer control
#define CCxxx0_FSCTRL0      0x0C        // Frequency synthesizer control
#define CCxxx0_FREQ2        0x0D        // Frequency control word, high byte
#define CCxxx0_FREQ1        0x0E        // Frequency control word, middle byte
#define CCxxx0_FREQ0        0x0F        // Frequency control word, low byte
#define CCxxx0_MDMCFG4      0x10        // Modem configuration
#define CCxxx0_MDMCFG3      0x11        // Modem configuration
#define CCxxx0_MDMCFG2      0x12        // Modem configuration
#define CCxxx0_MDMCFG1      0x13        // Modem configuration
#define CCxxx0_MDMCFG0      0x14        // Modem configuration
#define CCxxx0_DEVIATN      0x15        // Modem deviation setting
#define CCxxx0_MCSM2        0x16        // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1        0x17        // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0        0x18        // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG       0x19        // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG        0x1A        // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2     0x1B        // AGC control
#define CCxxx0_AGCCTRL1     0x1C        // AGC control
#define CCxxx0_AGCCTRL0     0x1D        // AGC control
#define CCxxx0_WOREVT1      0x1E        // High byte Event 0 timeout
#define CCxxx0_WOREVT0      0x1F        // Low byte Event 0 timeout
#define CCxxx0_WORCTRL      0x20        // Wake On Radio control
#define CCxxx0_FREND1       0x21        // Front end RX configuration
#define CCxxx0_FREND0       0x22        // Front end TX configuration
#define CCxxx0_FSCAL3       0x23        // Frequency synthesizer calibration
#define CCxxx0_FSCAL2       0x24        // Frequency synthesizer calibration
#define CCxxx0_FSCAL1       0x25        // Frequency synthesizer calibration
#define CCxxx0_FSCAL0       0x26        // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1      0x27        // RC oscillator configuration
#define CCxxx0_RCCTRL0      0x28        // RC oscillator configuration
#define CCxxx0_FSTEST       0x29        // Frequency synthesizer calibration control
#define CCxxx0_PTEST        0x2A        // Production test
#define CCxxx0_AGCTEST      0x2B        // AGC test
#define CCxxx0_TEST2        0x2C        // Various test settings
#define CCxxx0_TEST1        0x2D        // Various test settings
#define CCxxx0_TEST0        0x2E        // Various test settings

// Strobe commands
#define CCxxx0_SRES         0x30        // Reset chip.
#define CCxxx0_SFSTXON      0x31        // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
                                        // If in RX/TX: Go to a wait state where only the synthesizer is
                                        // running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF        0x32        // Turn off crystal oscillator.
#define CCxxx0_SCAL         0x33        // Calibrate frequency synthesizer and turn it off
                                        // (enables quick start).
#define CCxxx0_SRX          0x34        // Enable RX. Perform calibration first if coming from IDLE and
                                        // MCSM0.FS_AUTOCAL=1.
#define CCxxx0_STX          0x35        // In IDLE state: Enable TX. Perform calibration first if
                                        // MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
                                        // Only go to TX if channel is clear.
#define CCxxx0_SIDLE        0x36        // Exit RX / TX, turn off frequency synthesizer and exit
                                        // Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC         0x37        // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR         0x38        // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD         0x39        // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX         0x3A        // Flush the RX FIFO buffer.
#define CCxxx0_SFTX         0x3B        // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST      0x3C        // Reset real time clock.
#define CCxxx0_SNOP         0x3D        // No operation. May be used to pad strobe commands to two
                                        // bytes for simpler software.

#define CCxxx0_PARTNUM          0x30
#define CCxxx0_VERSION          0x31
#define CCxxx0_FREQEST          0x32
#define CCxxx0_LQI              0x33
#define CCxxx0_RSSI             0x34
#define CCxxx0_MARCSTATE        0x35
#define CCxxx0_WORTIME1         0x36
#define CCxxx0_WORTIME0         0x37
#define CCxxx0_PKTSTATUS        0x38
#define CCxxx0_VCO_VC_DAC       0x39
#define CCxxx0_TXBYTES          0x3A
#define CCxxx0_RXBYTES          0x3B
#define CCxxx0_RCCTRL1_STATUS   0x3C
#define CCxxx0_RCCTRL0_STATUS   0x3D

#define CCxxx0_PATABLE          0x3E
#define CCxxx0_TXFIFO           0x3F
#define CCxxx0_RXFIFO           0x3F

// 通道数据变量
uint16_t	channelData[MAX_CHANNELS];		// 每个通道采用16位二进制数表示,单位uS (732-2268)
uint8_t		package[PACKAGE_LEN];			// 数据包

volatile uint8_t newDataFound;		// 新数据标志
volatile uint8_t isSetting;			// 设置状态标志
volatile uint16_t Min[MAX_CHANNELS];
volatile uint16_t Max[MAX_CHANNELS];

// 8位CRC检验码
uint8_t crc8_ibutton(uint8_t *data, size_t n) {
	
	uint8_t crc = 0x00;
	while(n) {
		crc = _crc_ibutton_update(crc, *data ++);
		--n;
	}

	return crc;

}

void SPI_Master_Init() {

	// 设置SS, MOSI和SCK为输出,其他为输入
	DDRB = _BV(PB1) | _BV(PB2) | _BV(PB3) | _BV(PB5);

	// MISO 设置为输入,并使能内部上拉电阻
	PORTB |= _BV(PB4);

	// SS默认拉高
	SEL_HI();

	// 使能SPI主机模式,设置时钟速率为 fck/2
	SPCR = _BV(SPE) | _BV(MSTR) | _BV(SPI2X);

	SPSR = 0x00;

}


void halSpiStrobe(uint8_t strobe) {

	SEL_LO();

	while(CCxxx0_Ready()); 
	SPDR = strobe;
	SPI_WAIT();

	SEL_HI();

}

uint8_t halSpiReadReg(uint8_t addr) {

	uint8_t x;	

	SEL_LO();

	while(CCxxx0_Ready()); 
	SPDR = (addr | READ_SINGLE);
	SPI_WAIT();
	SPDR = 0;
	SPI_WAIT();
	x = SPDR;

	SEL_HI();

	return (x);

}

void halSpiWriteReg(uint8_t addr, uint8_t value) {
    
	SEL_LO();

	while(CCxxx0_Ready()); 
    SPDR = addr;
	SPI_WAIT();
    SPDR = value;
	SPI_WAIT();

    SEL_HI();

}

void halSpiWriteBurstReg(uint8_t addr, uint8_t *buffer, uint8_t count) {

    uint8_t i;

    SEL_LO();

	while(CCxxx0_Ready()); 
    SPDR = addr | WRITE_BURST;
    SPI_WAIT();
    for (i = 0; i < count; i++) {
        SPDR = buffer[i];
        SPI_WAIT();
    }

    SEL_HI();

}

void halSpiReadBurstReg(uint8_t addr, uint8_t *buffer, uint8_t count) {

    uint8_t i;

    SEL_LO();

	while(CCxxx0_Ready()); 
    SPDR = (addr | READ_BURST);
    SPI_WAIT();  
    for (i = 0; i < count; i++) {
        SPDR = 0;
        SPI_WAIT();
        buffer[i] = SPDR;
    }

    SEL_HI();

}

uint8_t halSpiReadStatus(uint8_t addr) {
    uint8_t x;
    
	SEL_LO();
    
	while(CCxxx0_Ready()); 
    SPDR = (addr | READ_BURST);
    SPI_WAIT();
    SPDR = 0;
    SPI_WAIT();
    x = SPDR;

    SEL_HI();

    return x;
}

void RESET_CCxxx0() {
        
	SEL_LO();
    
	while(CCxxx0_Ready()); 
    SPDR = CCxxx0_SRES;
    SPI_WAIT();
    
	SEL_HI(); 

}

void POWER_UP_RESET_CCxxx0() {
	
    SEL_HI();
    _delay_ms(1);
    SEL_LO();
    _delay_ms(1);
    SEL_HI();
    _delay_ms(41);

    RESET_CCxxx0();

}

void CC2500_Init() {

	// CC2500上电重启
	POWER_UP_RESET_CCxxx0();	

    // 设置寄存器值
    halSpiWriteReg(CCxxx0_PATABLE,	0xFE);

    halSpiWriteReg(CCxxx0_IOCFG1,	0x07);
    
	halSpiWriteReg(CCxxx0_PKTLEN,	PACKAGE_LEN);
    halSpiWriteReg(CCxxx0_PKTCTRL1,	0x84);
    halSpiWriteReg(CCxxx0_PKTCTRL0,	0x0C);
    halSpiWriteReg(CCxxx0_FSCTRL1,	0x09);

    halSpiWriteReg(CCxxx0_FREQ2, 	0x5D);
    halSpiWriteReg(CCxxx0_FREQ1,    0xB1);
    halSpiWriteReg(CCxxx0_FREQ0,    0x38);
    
	// 32Kbps
	halSpiWriteReg(CCxxx0_MDMCFG4,  0x2A);
    halSpiWriteReg(CCxxx0_MDMCFG3,  0x3B);
    halSpiWriteReg(CCxxx0_MDMCFG2,  0x73);
    halSpiWriteReg(CCxxx0_MDMCFG1,  0xD2);
    halSpiWriteReg(CCxxx0_MDMCFG0,  0xF8);


    halSpiWriteReg(CCxxx0_DEVIATN,  0x01);

    halSpiWriteReg(CCxxx0_MCSM2,	0x07);
    halSpiWriteReg(CCxxx0_MCSM1,	0x30);
	halSpiWriteReg(CCxxx0_MCSM0,	0x18);

    halSpiWriteReg(CCxxx0_FOCCFG,   0x1D);
    halSpiWriteReg(CCxxx0_BSCFG,    0x1C);

    halSpiWriteReg(CCxxx0_AGCCTRL2, 0xC7);
	halSpiWriteReg(CCxxx0_AGCCTRL1, 0x00);
    halSpiWriteReg(CCxxx0_AGCCTRL0, 0xB2);

    halSpiWriteReg(CCxxx0_FREND1,   0xB6);

    halSpiWriteReg(CCxxx0_FSCAL3,   0xCA);
    halSpiWriteReg(CCxxx0_FSCAL0,   0x11);
   	
	// 清发送寄存器
	halSpiStrobe(CCxxx0_SFTX);
	
	// 校正
	halSpiStrobe(CCxxx0_SCAL);
	while(halSpiReadStatus(CCxxx0_FSCAL1) == 0x3F);

}

void halRfSendPacket(uint8_t *txBuffer, uint8_t size) {

	halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size);

    halSpiStrobe(CCxxx0_STX);

	// 等待结束
	// ...
	while(halSpiReadStatus(CCxxx0_MARCSTATE) != STATE_IDLE);

}


void IO_Init()
{

	DDRD |= _BV(PD6);
	PORTD &= ~_BV(PD6);

	DDRC &= ~_BV(PC5);
	PORTC &= ~_BV(PC5);
	
	// 管脚电平中断使能PC5

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -