📄 stl_algobase.h
字号:
// Bits and pieces used in algorithms -*- C++ -*-// Copyright (C) 2001, 2002 Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License./* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. *//** @file stl_algobase.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */#ifndef __GLIBCPP_INTERNAL_ALGOBASE_H#define __GLIBCPP_INTERNAL_ALGOBASE_H#include <bits/c++config.h>#include <cstring>#include <climits>#include <cstdlib>#include <cstddef>#include <new>#include <iosfwd>#include <bits/stl_pair.h>#include <bits/type_traits.h>#include <bits/stl_iterator_base_types.h>#include <bits/stl_iterator_base_funcs.h>#include <bits/stl_iterator.h>#include <bits/concept_check.h>namespace std{ // swap and iter_swap /** * @brief Swaps the contents of two iterators. * @param a An iterator. * @param b Another iterator. * @return Nothing. * * This function swaps the values pointed to by two iterators, not the * iterators themselves. */ template<typename _ForwardIter1, typename _ForwardIter2> inline void iter_swap(_ForwardIter1 __a, _ForwardIter2 __b) { typedef typename iterator_traits<_ForwardIter1>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIter2>::value_type _ValueType2; // concept requirements __glibcpp_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIter1>) __glibcpp_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIter2>) __glibcpp_function_requires(_ConvertibleConcept<_ValueType1, _ValueType2>) __glibcpp_function_requires(_ConvertibleConcept<_ValueType2, _ValueType1>) _ValueType1 __tmp = *__a; *__a = *__b; *__b = __tmp; } /** * @brief Swaps two values. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return Nothing. * * This is the simple classic generic implementation. It will work on * any type which has a copy constructor and an assignment operator. */ template<typename _Tp> inline void swap(_Tp& __a, _Tp& __b) { // concept requirements __glibcpp_function_requires(_SGIAssignableConcept<_Tp>) _Tp __tmp = __a; __a = __b; __b = __tmp; } //-------------------------------------------------- // min and max #undef min #undef max /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The lesser of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template<typename _Tp> inline const _Tp& min(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcpp_function_requires(_LessThanComparableConcept<_Tp>) //return __b < __a ? __b : __a; if (__b < __a) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The greater of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template<typename _Tp> inline const _Tp& max(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcpp_function_requires(_LessThanComparableConcept<_Tp>) //return __a < __b ? __b : __a; if (__a < __b) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return The lesser of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__b, __a) ? __b : __a; if (__comp(__b, __a)) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return The greater of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__a, __b) ? __b : __a; if (__comp(__a, __b)) return __b; return __a; } //-------------------------------------------------- // copy // All of these auxiliary functions serve two purposes. (1) Replace // calls to copy with memmove whenever possible. (Memmove, not memcpy, // because the input and output ranges are permitted to overlap.) // (2) If we're using random access iterators, then write the loop as // a for loop with an explicit count. template<typename _InputIter, typename _OutputIter> inline _OutputIter __copy(_InputIter __first, _InputIter __last, _OutputIter __result, input_iterator_tag) { for ( ; __first != __last; ++__result, ++__first) *__result = *__first; return __result; } template<typename _RandomAccessIter, typename _OutputIter> inline _OutputIter __copy(_RandomAccessIter __first, _RandomAccessIter __last, _OutputIter __result, random_access_iterator_tag) { typedef typename iterator_traits<_RandomAccessIter>::difference_type _Distance; for (_Distance __n = __last - __first; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } template<typename _Tp> inline _Tp* __copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result) { memmove(__result, __first, sizeof(_Tp) * (__last - __first)); return __result + (__last - __first); } template<typename _InputIter, typename _OutputIter> inline _OutputIter __copy_aux2(_InputIter __first, _InputIter __last, _OutputIter __result, __false_type) { return __copy(__first, __last, __result, __iterator_category(__first)); } template<typename _InputIter, typename _OutputIter> inline _OutputIter __copy_aux2(_InputIter __first, _InputIter __last, _OutputIter __result, __true_type) { return __copy(__first, __last, __result, __iterator_category(__first)); } template<typename _Tp> inline _Tp* __copy_aux2(_Tp* __first, _Tp* __last, _Tp* __result, __true_type) { return __copy_trivial(__first, __last, __result); } template<typename _Tp> inline _Tp* __copy_aux2(const _Tp* __first, const _Tp* __last, _Tp* __result, __true_type) { return __copy_trivial(__first, __last, __result); } template<typename _InputIter, typename _OutputIter> inline _OutputIter __copy_ni2(_InputIter __first, _InputIter __last, _OutputIter __result, __true_type) { typedef typename iterator_traits<_InputIter>::value_type _ValueType; typedef typename __type_traits<_ValueType>::has_trivial_assignment_operator _Trivial; return _OutputIter(__copy_aux2(__first, __last, __result.base(), _Trivial())); } template<typename _InputIter, typename _OutputIter> inline _OutputIter __copy_ni2(_InputIter __first, _InputIter __last, _OutputIter __result, __false_type) { typedef typename iterator_traits<_InputIter>::value_type _ValueType; typedef typename __type_traits<_ValueType>::has_trivial_assignment_operator _Trivial; return __copy_aux2(__first, __last, __result, _Trivial()); } template<typename _InputIter, typename _OutputIter> inline _OutputIter __copy_ni1(_InputIter __first, _InputIter __last, _OutputIter __result, __true_type) { typedef typename _Is_normal_iterator<_OutputIter>::_Normal __Normal; return __copy_ni2(__first.base(), __last.base(), __result, __Normal()); } template<typename _InputIter, typename _OutputIter> inline _OutputIter __copy_ni1(_InputIter __first, _InputIter __last, _OutputIter __result, __false_type) { typedef typename _Is_normal_iterator<_OutputIter>::_Normal __Normal; return __copy_ni2(__first, __last, __result, __Normal()); } /** * @brief Copies the range [first,last) into result. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return result + (first - last) * * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). If the input range and the output * range overlap, then the copy_backward function should be used instead. */ template<typename _InputIter, typename _OutputIter> inline _OutputIter copy(_InputIter __first, _InputIter __last, _OutputIter __result) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter>) __glibcpp_function_requires(_OutputIteratorConcept<_OutputIter, typename iterator_traits<_InputIter>::value_type>) typedef typename _Is_normal_iterator<_InputIter>::_Normal __Normal; return __copy_ni1(__first, __last, __result, __Normal()); } //-------------------------------------------------- // copy_backward template<typename _BidirectionalIter1, typename _BidirectionalIter2> inline _BidirectionalIter2 __copy_backward(_BidirectionalIter1 __first, _BidirectionalIter1 __last, _BidirectionalIter2 __result, bidirectional_iterator_tag) { while (__first != __last) *--__result = *--__last; return __result; } template<typename _RandomAccessIter, typename _BidirectionalIter> inline _BidirectionalIter __copy_backward(_RandomAccessIter __first, _RandomAccessIter __last, _BidirectionalIter __result, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIter>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = *--__last; return __result; } // This dispatch class is a workaround for compilers that do not // have partial ordering of function templates. All we're doing is // creating a specialization so that we can turn a call to copy_backward // into a memmove whenever possible. template<typename _BidirectionalIter1, typename _BidirectionalIter2, typename _BoolType> struct __copy_backward_dispatch { static _BidirectionalIter2 copy(_BidirectionalIter1 __first, _BidirectionalIter1 __last, _BidirectionalIter2 __result) { return __copy_backward(__first, __last, __result, __iterator_category(__first)); } }; template<typename _Tp> struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type> { static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) { const ptrdiff_t _Num = __last - __first; memmove(__result - _Num, __first, sizeof(_Tp) * _Num); return __result - _Num; } }; template<typename _Tp> struct __copy_backward_dispatch<const _Tp*, _Tp*, __true_type>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -