📄 basic_string.tcc
字号:
typename iterator_traits<const _CharT*>::iterator_category()); } template<typename _CharT, typename _Traits, typename _Alloc> void basic_string<_CharT, _Traits, _Alloc>::_Rep:: _M_destroy(const _Alloc& __a) throw () { size_type __size = sizeof(_Rep) + (_M_capacity + 1) * sizeof(_CharT); _Raw_bytes_alloc(__a).deallocate(reinterpret_cast<char*>(this), __size); } template<typename _CharT, typename _Traits, typename _Alloc> void basic_string<_CharT, _Traits, _Alloc>::_M_leak_hard() { if (_M_rep()->_M_is_shared()) _M_mutate(0, 0, 0); _M_rep()->_M_set_leaked(); } // _M_mutate and, below, _M_clone, include, in the same form, an exponential // growth policy, necessary to meet amortized linear time requirements of // the library: see http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html. // The policy is active for allocations requiring an amount of memory above // system pagesize. This is consistent with the requirements of the standard: // see, f.i., http://gcc.gnu.org/ml/libstdc++/2001-07/msg00130.html template<typename _CharT, typename _Traits, typename _Alloc> void basic_string<_CharT, _Traits, _Alloc>:: _M_mutate(size_type __pos, size_type __len1, size_type __len2) { size_type __old_size = this->size(); const size_type __new_size = __old_size + __len2 - __len1; const _CharT* __src = _M_data() + __pos + __len1; const size_type __how_much = __old_size - __pos - __len1; if (_M_rep()->_M_is_shared() || __new_size > capacity()) { // Must reallocate. allocator_type __a = get_allocator(); // See below (_S_create) for the meaning and value of these // constants. const size_type __pagesize = 4096; const size_type __malloc_header_size = 4 * sizeof (void*); // The biggest string which fits in a memory page const size_type __page_capacity = (__pagesize - __malloc_header_size - sizeof(_Rep) - sizeof(_CharT)) / sizeof(_CharT); _Rep* __r; if (__new_size > capacity() && __new_size > __page_capacity) // Growing exponentially. __r = _Rep::_S_create(__new_size > 2*capacity() ? __new_size : 2*capacity(), __a); else __r = _Rep::_S_create(__new_size, __a); try { if (__pos) traits_type::copy(__r->_M_refdata(), _M_data(), __pos); if (__how_much) traits_type::copy(__r->_M_refdata() + __pos + __len2, __src, __how_much); } catch(...) { __r->_M_dispose(get_allocator()); __throw_exception_again; } _M_rep()->_M_dispose(__a); _M_data(__r->_M_refdata()); } else if (__how_much && __len1 != __len2) { // Work in-place traits_type::move(_M_data() + __pos + __len2, __src, __how_much); } _M_rep()->_M_set_sharable(); _M_rep()->_M_length = __new_size; _M_data()[__new_size] = _Rep::_S_terminal; // grrr. (per 21.3.4) // You cannot leave those LWG people alone for a second. } template<typename _CharT, typename _Traits, typename _Alloc> void basic_string<_CharT, _Traits, _Alloc>::reserve(size_type __res) { if (__res > this->capacity() || _M_rep()->_M_is_shared()) { if (__res > this->max_size()) __throw_length_error("basic_string::reserve"); // Make sure we don't shrink below the current size if (__res < this->size()) __res = this->size(); allocator_type __a = get_allocator(); _CharT* __tmp = _M_rep()->_M_clone(__a, __res - this->size()); _M_rep()->_M_dispose(__a); _M_data(__tmp); } } template<typename _CharT, typename _Traits, typename _Alloc> void basic_string<_CharT, _Traits, _Alloc>::swap(basic_string& __s) { if (_M_rep()->_M_is_leaked()) _M_rep()->_M_set_sharable(); if (__s._M_rep()->_M_is_leaked()) __s._M_rep()->_M_set_sharable(); if (this->get_allocator() == __s.get_allocator()) { _CharT* __tmp = _M_data(); _M_data(__s._M_data()); __s._M_data(__tmp); } // The code below can usually be optimized away. else { basic_string __tmp1(_M_ibegin(), _M_iend(), __s.get_allocator()); basic_string __tmp2(__s._M_ibegin(), __s._M_iend(), this->get_allocator()); *this = __tmp2; __s = __tmp1; } } template<typename _CharT, typename _Traits, typename _Alloc> typename basic_string<_CharT, _Traits, _Alloc>::_Rep* basic_string<_CharT, _Traits, _Alloc>::_Rep:: _S_create(size_t __capacity, const _Alloc& __alloc) { typedef basic_string<_CharT, _Traits, _Alloc> __string_type;#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS // 83. String::npos vs. string::max_size() if (__capacity > _S_max_size)#else if (__capacity == npos)#endif __throw_length_error("basic_string::_S_create"); // NB: Need an array of char_type[__capacity], plus a // terminating null char_type() element, plus enough for the // _Rep data structure. Whew. Seemingly so needy, yet so elemental. size_t __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); // The standard places no restriction on allocating more memory // than is strictly needed within this layer at the moment or as // requested by an explicit application call to reserve(). Many // malloc implementations perform quite poorly when an // application attempts to allocate memory in a stepwise fashion // growing each allocation size by only 1 char. Additionally, // it makes little sense to allocate less linear memory than the // natural blocking size of the malloc implementation. // Unfortunately, we would need a somewhat low-level calculation // with tuned parameters to get this perfect for any particular // malloc implementation. Fortunately, generalizations about // common features seen among implementations seems to suffice. // __pagesize need not match the actual VM page size for good // results in practice, thus we pick a common value on the low // side. __malloc_header_size is an estimate of the amount of // overhead per memory allocation (in practice seen N * sizeof // (void*) where N is 0, 2 or 4). According to folklore, // picking this value on the high side is better than // low-balling it (especially when this algorithm is used with // malloc implementations that allocate memory blocks rounded up // to a size which is a power of 2). const size_t __pagesize = 4096; // must be 2^i * __subpagesize const size_t __subpagesize = 128; // should be >> __malloc_header_size const size_t __malloc_header_size = 4 * sizeof (void*); if ((__size + __malloc_header_size) > __pagesize) { size_t __extra = (__pagesize - ((__size + __malloc_header_size) % __pagesize)) % __pagesize; __capacity += __extra / sizeof(_CharT); __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); } else if (__size > __subpagesize) { size_t __extra = (__subpagesize - ((__size + __malloc_header_size) % __subpagesize)) % __subpagesize; __capacity += __extra / sizeof(_CharT); __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); } // NB: Might throw, but no worries about a leak, mate: _Rep() // does not throw. void* __place = _Raw_bytes_alloc(__alloc).allocate(__size); _Rep *__p = new (__place) _Rep; __p->_M_capacity = __capacity; __p->_M_set_sharable(); // One reference. __p->_M_length = 0; return __p; } template<typename _CharT, typename _Traits, typename _Alloc> _CharT* basic_string<_CharT, _Traits, _Alloc>::_Rep:: _M_clone(const _Alloc& __alloc, size_type __res) { // Requested capacity of the clone. const size_type __requested_cap = _M_length + __res; // See above (_S_create) for the meaning and value of these constants. const size_type __pagesize = 4096; const size_type __malloc_header_size = 4 * sizeof (void*); // The biggest string which fits in a memory page. const size_type __page_capacity = (__pagesize - __malloc_header_size - sizeof(_Rep) - sizeof(_CharT)) / sizeof(_CharT); _Rep* __r; if (__requested_cap > _M_capacity && __requested_cap > __page_capacity) // Growing exponentially. __r = _Rep::_S_create(__requested_cap > 2*_M_capacity ? __requested_cap : 2*_M_capacity, __alloc); else __r = _Rep::_S_create(__requested_cap, __alloc); if (_M_length) { try { traits_type::copy(__r->_M_refdata(), _M_refdata(), _M_length); } catch(...) { __r->_M_destroy(__alloc); __throw_exception_again; } } __r->_M_length = _M_length; __r->_M_refdata()[_M_length] = _Rep::_S_terminal; return __r->_M_refdata(); } template<typename _CharT, typename _Traits, typename _Alloc> void basic_string<_CharT, _Traits, _Alloc>::resize(size_type __n, _CharT __c) { if (__n > max_size()) __throw_length_error("basic_string::resize"); size_type __size = this->size(); if (__size < __n) this->append(__n - __size, __c); else if (__n < __size) this->erase(__n); // else nothing (in particular, avoid calling _M_mutate() unnecessarily.) } // This is the general replace helper, which currently gets instantiated both // for input iterators and reverse iterators. It buffers internally and then // calls _M_replace_safe. template<typename _CharT, typename _Traits, typename _Alloc> template<typename _InputIter> basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: _M_replace(iterator __i1, iterator __i2, _InputIter __k1, _InputIter __k2, input_iterator_tag) { // Save concerned source string data in a temporary. basic_string __s(__k1, __k2); return _M_replace_safe(__i1, __i2, __s._M_ibegin(), __s._M_iend()); } // This is a special replace helper, which does not buffer internally // and can be used in "safe" situations involving forward iterators, // i.e., when source and destination ranges are known to not overlap. template<typename _CharT, typename _Traits, typename _Alloc> template<typename _ForwardIter> basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: _M_replace_safe(iterator __i1, iterator __i2, _ForwardIter __k1, _ForwardIter __k2) { size_type __dnew = static_cast<size_type>(std::distance(__k1, __k2)); size_type __dold = __i2 - __i1; size_type __dmax = this->max_size(); if (__dmax <= __dnew) __throw_length_error("basic_string::_M_replace"); size_type __off = __i1 - _M_ibegin(); _M_mutate(__off, __dold, __dnew); // Invalidated __i1, __i2 if (__dnew) _S_copy_chars(_M_data() + __off, __k1, __k2); return *this; } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: replace(size_type __pos1, size_type __n1, const basic_string& __str, size_type __pos2, size_type __n2) { const size_type __strsize = __str.size(); if (__pos2 > __strsize) __throw_out_of_range("basic_string::replace"); const bool __testn2 = __n2 < __strsize - __pos2; const size_type __foldn2 = __testn2 ? __n2 : __strsize - __pos2; return this->replace(__pos1, __n1, __str._M_data() + __pos2, __foldn2); } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const basic_string& __str) { // Iff appending itself, string needs to pre-reserve the // correct size so that _M_mutate does not clobber the // iterators formed here. size_type __size = __str.size(); size_type __len = __size + this->size(); if (__len > this->capacity()) this->reserve(__len); return _M_replace_safe(_M_iend(), _M_iend(), __str._M_ibegin(), __str._M_iend()); } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const basic_string& __str, size_type __pos, size_type __n) { // Iff appending itself, string needs to pre-reserve the // correct size so that _M_mutate does not clobber the // iterators formed here. size_type __len = std::min(size_type(__str.size() - __pos), __n) + this->size(); if (__len > this->capacity()) this->reserve(__len); return _M_replace_safe(_M_iend(), _M_iend(), __str._M_check(__pos), __str._M_fold(__pos, __n)); } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const _CharT* __s, size_type __n) { size_type __len = __n + this->size(); if (__len > this->capacity()) this->reserve(__len); return _M_replace_safe(_M_iend(), _M_iend(), __s, __s + __n); } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(size_type __n, _CharT __c) { size_type __len = __n + this->size(); if (__len > this->capacity()) this->reserve(__len); return this->replace(_M_iend(), _M_iend(), __n, __c); } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc> operator+(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __string_type::size_type __size_type; __size_type __len = _Traits::length(__lhs);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -