⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stl_map.h

📁 俄罗斯高人Mamaich的Pocket gcc编译器(运行在PocketPC上)的全部源代码。
💻 H
📖 第 1 页 / 共 2 页
字号:
     *  This function attempts to insert a (key, value) %pair into the %map.     *  A %map relies on unique keys and thus a %pair is only inserted if its     *  first element (the key) is not already present in the %map.     *     *  Insertion requires logarithmic time.    */    pair<iterator,bool>    insert(const value_type& __x)    { return _M_t.insert_unique(__x); }      /**     *  @brief Attempts to insert a std::pair into the %map.     *  @param  position  An iterator that serves as a hint as to where the     *                    pair should be inserted.     *  @param  x  Pair to be inserted (see std::make_pair for easy creation of     *             pairs).     *  @return  An iterator that points to the element with key of @a x (may     *           or may not be the %pair passed in).     *     *  This function is not concerned about whether the insertion took place,     *  and thus does not return a boolean like the single-argument     *  insert() does.  Note that the first parameter is only a hint and can     *  potentially improve the performance of the insertion process.  A bad     *  hint would cause no gains in efficiency.     *     *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4     *  for more on "hinting".     *     *  Insertion requires logarithmic time (if the hint is not taken).    */    iterator    insert(iterator position, const value_type& __x)    { return _M_t.insert_unique(position, __x); }      /**     *  @brief A template function that attemps to insert a range of elements.     *  @param  first  Iterator pointing to the start of the range to be     *                 inserted.     *  @param  last  Iterator pointing to the end of the range.     *     *  Complexity similar to that of the range constructor.    */    template <typename _InputIterator>      void      insert(_InputIterator __first, _InputIterator __last)      { _M_t.insert_unique(__first, __last); }      /**     *  @brief Erases an element from a %map.     *  @param  position  An iterator pointing to the element to be erased.     *     *  This function erases an element, pointed to by the given iterator, from     *  a %map.  Note that this function only erases the element, and that if     *  the element is itself a pointer, the pointed-to memory is not touched     *  in any way.  Managing the pointer is the user's responsibilty.    */    void    erase(iterator __position) { _M_t.erase(__position); }      /**     *  @brief Erases elements according to the provided key.     *  @param  x  Key of element to be erased.     *  @return  The number of elements erased.     *     *  This function erases all the elements located by the given key from     *  a %map.     *  Note that this function only erases the element, and that if     *  the element is itself a pointer, the pointed-to memory is not touched     *  in any way.  Managing the pointer is the user's responsibilty.    */    size_type    erase(const key_type& __x) { return _M_t.erase(__x); }      /**     *  @brief Erases a [first,last) range of elements from a %map.     *  @param  first  Iterator pointing to the start of the range to be erased.     *  @param  last  Iterator pointing to the end of the range to be erased.     *     *  This function erases a sequence of elements from a %map.     *  Note that this function only erases the element, and that if     *  the element is itself a pointer, the pointed-to memory is not touched     *  in any way.  Managing the pointer is the user's responsibilty.    */    void    erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }      /**     *  @brief  Swaps data with another %map.     *  @param  x  A %map of the same element and allocator types.     *     *  This exchanges the elements between two maps in constant time.     *  (It is only swapping a pointer, an integer, and an instance of     *  the @c Compare type (which itself is often stateless and empty), so it     *  should be quite fast.)     *  Note that the global std::swap() function is specialized such that     *  std::swap(m1,m2) will feed to this function.    */    void    swap(map& __x) { _M_t.swap(__x._M_t); }      /**     *  Erases all elements in a %map.  Note that this function only erases     *  the elements, and that if the elements themselves are pointers, the     *  pointed-to memory is not touched in any way.  Managing the pointer is     *  the user's responsibilty.    */    void    clear() { _M_t.clear(); }      // observers    /**     *  Returns the key comparison object out of which the %map was constructed.    */    key_compare    key_comp() const { return _M_t.key_comp(); }      /**     *  Returns a value comparison object, built from the key comparison     *  object out of which the %map was constructed.    */    value_compare    value_comp() const { return value_compare(_M_t.key_comp()); }      // [23.3.1.3] map operations    /**     *  @brief Tries to locate an element in a %map.     *  @param  x  Key of (key, value) %pair to be located.     *  @return  Iterator pointing to sought-after element, or end() if not     *           found.     *     *  This function takes a key and tries to locate the element with which     *  the key matches.  If successful the function returns an iterator     *  pointing to the sought after %pair.  If unsuccessful it returns the     *  past-the-end ( @c end() ) iterator.    */    iterator    find(const key_type& __x) { return _M_t.find(__x); }      /**     *  @brief Tries to locate an element in a %map.     *  @param  x  Key of (key, value) %pair to be located.     *  @return  Read-only (constant) iterator pointing to sought-after     *           element, or end() if not found.     *     *  This function takes a key and tries to locate the element with which     *  the key matches.  If successful the function returns a constant iterator     *  pointing to the sought after %pair. If unsuccessful it returns the     *  past-the-end ( @c end() ) iterator.    */    const_iterator    find(const key_type& __x) const { return _M_t.find(__x); }      /**     *  @brief  Finds the number of elements with given key.     *  @param  x  Key of (key, value) pairs to be located.     *  @return  Number of elements with specified key.     *     *  This function only makes sense for multimaps; for map the result will     *  either be 0 (not present) or 1 (present).    */    size_type    count(const key_type& __x) const    { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }      /**     *  @brief Finds the beginning of a subsequence matching given key.     *  @param  x  Key of (key, value) pair to be located.     *  @return  Iterator pointing to first element matching given key, or     *           end() if not found.     *     *  This function is useful only with multimaps.  It returns the first     *  element of a subsequence of elements that matches the given key.  If     *  unsuccessful it returns an iterator pointing to the first element that     *  has a greater value than given key or end() if no such element exists.    */    iterator    lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }      /**     *  @brief Finds the beginning of a subsequence matching given key.     *  @param  x  Key of (key, value) pair to be located.     *  @return  Read-only (constant) iterator pointing to first element     *           matching given key, or end() if not found.     *     *  This function is useful only with multimaps.  It returns the first     *  element of a subsequence of elements that matches the given key.  If     *  unsuccessful the iterator will point to the next greatest element or,     *  if no such greater element exists, to end().    */    const_iterator    lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }      /**     *  @brief Finds the end of a subsequence matching given key.     *  @param  x  Key of (key, value) pair to be located.     *  @return Iterator pointing to last element matching given key.     *     *  This function only makes sense with multimaps.    */    iterator    upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }      /**     *  @brief Finds the end of a subsequence matching given key.     *  @param  x  Key of (key, value) pair to be located.     *  @return  Read-only (constant) iterator pointing to last element matching     *           given key.     *     *  This function only makes sense with multimaps.    */    const_iterator    upper_bound(const key_type& __x) const    { return _M_t.upper_bound(__x); }      /**     *  @brief Finds a subsequence matching given key.     *  @param  x  Key of (key, value) pairs to be located.     *  @return  Pair of iterators that possibly points to the subsequence     *           matching given key.     *     *  This function returns a pair of which the first     *  element possibly points to the first element matching the given key     *  and the second element possibly points to the last element matching the     *  given key.  If unsuccessful the first element of the returned pair will     *  contain an iterator pointing to the next greatest element or, if no such     *  greater element exists, to end().     *     *  This function only makes sense for multimaps.    */    pair<iterator,iterator>    equal_range(const key_type& __x)    { return _M_t.equal_range(__x); }      /**     *  @brief Finds a subsequence matching given key.     *  @param  x  Key of (key, value) pairs to be located.     *  @return  Pair of read-only (constant) iterators that possibly points to     *           the subsequence matching given key.     *     *  This function returns a pair of which the first     *  element possibly points to the first element matching the given key     *  and the second element possibly points to the last element matching the     *  given key.  If unsuccessful the first element of the returned pair will     *  contain an iterator pointing to the next greatest element or, if no such     *  a greater element exists, to end().     *     *  This function only makes sense for multimaps.    */    pair<const_iterator,const_iterator>    equal_range(const key_type& __x) const    { return _M_t.equal_range(__x); }      template <typename _K1, typename _T1, typename _C1, typename _A1>    friend bool operator== (const map<_K1,_T1,_C1,_A1>&,                            const map<_K1,_T1,_C1,_A1>&);    template <typename _K1, typename _T1, typename _C1, typename _A1>    friend bool operator< (const map<_K1,_T1,_C1,_A1>&,                           const map<_K1,_T1,_C1,_A1>&);  };      /**   *  @brief  Map equality comparison.   *  @param  x  A %map.   *  @param  y  A %map of the same type as @a x.   *  @return  True iff the size and elements of the maps are equal.   *   *  This is an equivalence relation.  It is linear in the size of the   *  maps.  Maps are considered equivalent if their sizes are equal,   *  and if corresponding elements compare equal.  */  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return __x._M_t == __y._M_t; }    /**   *  @brief  Map ordering relation.   *  @param  x  A %map.   *  @param  y  A %map of the same type as @a x.   *  @return  True iff @a x is lexographically less than @a y.   *   *  This is a total ordering relation.  It is linear in the size of the   *  maps.  The elements must be comparable with @c <.   *   *  See std::lexographical_compare() for how the determination is made.  */  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,              const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return __x._M_t < __y._M_t; }    /// Based on operator==  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return !(__x == __y); }    /// Based on operator<  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,              const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return __y < __x; }    /// Based on operator<  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return !(__y < __x); }    /// Based on operator<  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return !(__x < __y); }    /// See std::map::swap().  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline void    swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)    { __x.swap(__y); }} // namespace std#endif /* __GLIBCPP_INTERNAL_MAP_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -