⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 std_limits.h

📁 俄罗斯高人Mamaich的Pocket gcc编译器(运行在PocketPC上)的全部源代码。
💻 H
📖 第 1 页 / 共 3 页
字号:
// The template and inlines for the -*- C++ -*- numeric_limits classes.// Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library.  This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction.  Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License.  This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.// Note: this is not a conforming implementation.// Written by Gabriel Dos Reis <gdr@codesourcery.com>//// ISO 14882:1998// 18.2.1///** @file limits *  This is a Standard C++ Library header.  You should @c #include this header *  in your programs, rather than any of the "st[dl]_*.h" implementation files. */#ifndef _CPP_NUMERIC_LIMITS#define _CPP_NUMERIC_LIMITS 1#pragma GCC system_header#include <bits/c++config.h>//// The numeric_limits<> traits document implementation-defined aspects// of fundamental arithmetic data types (integers and floating points).// From Standard C++ point of view, there are 13 such types://   * integers//         bool						        (1)//         char, signed char, unsigned char			(3)//         short, unsigned short				(2)//         int, unsigned					(2)//         long, unsigned long					(2)////   * floating points//         float						(1)//         double						(1)//         long double						(1)//// GNU C++ undertstands (where supported by the host C-library)//   * integer//         long long, unsigned long long			(2)//// which brings us to 15 fundamental arithmetic data types in GNU C++.////// Since a numeric_limits<> is a bit tricky to get right, we rely on// an interface composed of macros which should be defined in config/os// or config/cpu when they differ from the generic (read arbitrary)// definitions given here.//// These values can be overridden in the target configuration file.// The default values are appropriate for many 32-bit targets.// GCC only intrinsicly supports modulo integral types.  The only remaining// integral exceptional values is division by zero.  Only targets that do not// signal division by zero in some "hard to ignore" way should use false.#ifndef __glibcpp_integral_traps# define __glibcpp_integral_traps true#endif// float//// Default values.  Should be overriden in configuration files if necessary.#ifndef __glibcpp_float_has_denorm_loss#  define __glibcpp_float_has_denorm_loss false#endif#ifndef __glibcpp_float_traps#  define __glibcpp_float_traps false#endif#ifndef __glibcpp_float_tinyness_before#  define __glibcpp_float_tinyness_before false#endif// double// Default values.  Should be overriden in configuration files if necessary.#ifndef __glibcpp_double_has_denorm_loss#  define __glibcpp_double_has_denorm_loss false#endif#ifndef __glibcpp_double_traps#  define __glibcpp_double_traps false#endif#ifndef __glibcpp_double_tinyness_before#  define __glibcpp_double_tinyness_before false#endif// long double// Default values.  Should be overriden in configuration files if necessary.#ifndef __glibcpp_long_double_has_denorm_loss#  define __glibcpp_long_double_has_denorm_loss false#endif#ifndef __glibcpp_long_double_traps#  define __glibcpp_long_double_traps false#endif#ifndef __glibcpp_long_double_tinyness_before#  define __glibcpp_long_double_tinyness_before false#endif// You should not need to define any macros below this point.#define __glibcpp_signed(T)	((T)(-1) < 0)#define __glibcpp_min(T) \  (__glibcpp_signed (T) ? (T)1 << __glibcpp_digits (T) : (T)0)#define __glibcpp_max(T) \  (__glibcpp_signed (T) ? ((T)1 << __glibcpp_digits (T)) - 1 : ~(T)0)#define __glibcpp_digits(T) \  (sizeof(T) * __CHAR_BIT__ - __glibcpp_signed (T))// The fraction 643/2136 approximates log10(2) to 7 significant digits.#define __glibcpp_digits10(T) \  (__glibcpp_digits (T) * 643 / 2136)namespace std{  enum float_round_style  {    round_indeterminate       = -1,    round_toward_zero         = 0,    round_to_nearest          = 1,    round_toward_infinity     = 2,    round_toward_neg_infinity = 3  };  enum float_denorm_style  {    denorm_indeterminate = -1,    denorm_absent        = 0,    denorm_present       = 1  };  //  // The primary class traits  //  struct __numeric_limits_base  {    static const bool is_specialized = false;    static const int digits = 0;    static const int digits10 = 0;    static const bool is_signed = false;    static const bool is_integer = false;    static const bool is_exact = false;    static const int radix = 0;    static const int min_exponent = 0;    static const int min_exponent10 = 0;    static const int max_exponent = 0;    static const int max_exponent10 = 0;    static const bool has_infinity = false;    static const bool has_quiet_NaN = false;    static const bool has_signaling_NaN = false;    static const float_denorm_style has_denorm = denorm_absent;    static const bool has_denorm_loss = false;    static const bool is_iec559 = false;    static const bool is_bounded = false;    static const bool is_modulo = false;    static const bool traps = false;    static const bool tinyness_before = false;    static const float_round_style round_style = round_toward_zero;  };  template<typename _Tp>    struct numeric_limits : public __numeric_limits_base    {      static _Tp min() throw() { return static_cast<_Tp>(0); }      static _Tp max() throw() { return static_cast<_Tp>(0); }      static _Tp epsilon() throw() { return static_cast<_Tp>(0); }      static _Tp round_error() throw() { return static_cast<_Tp>(0); }      static _Tp infinity() throw()  { return static_cast<_Tp>(0); }      static _Tp quiet_NaN() throw() { return static_cast<_Tp>(0); }      static _Tp signaling_NaN() throw() { return static_cast<_Tp>(0); }      static _Tp denorm_min() throw() { return static_cast<_Tp>(0); }    };  // Now there follow 15 explicit specializations.  Yes, 15.  Make sure  // you get the count right.  template<>    struct numeric_limits<bool>    {      static const bool is_specialized = true;      static bool min() throw()      { return false; }      static bool max() throw()      { return true; }      static const int digits = 1;      static const int digits10 = 0;      static const bool is_signed = false;      static const bool is_integer = true;      static const bool is_exact = true;      static const int radix = 2;      static bool epsilon() throw()      { return false; }      static bool round_error() throw()      { return false; }      static const int min_exponent = 0;      static const int min_exponent10 = 0;      static const int max_exponent = 0;      static const int max_exponent10 = 0;      static const bool has_infinity = false;      static const bool has_quiet_NaN = false;      static const bool has_signaling_NaN = false;      static const float_denorm_style has_denorm = denorm_absent;      static const bool has_denorm_loss = false;      static bool infinity() throw()      { return false; }      static bool quiet_NaN() throw()      { return false; }      static bool signaling_NaN() throw()      { return false; }      static bool denorm_min() throw()      { return false; }      static const bool is_iec559 = false;      static const bool is_bounded = true;      static const bool is_modulo = false;      // It is not clear what it means for a boolean type to trap.      // This is a DR on the LWG issue list.  Here, I use integer      // promotion semantics.      static const bool traps = __glibcpp_integral_traps;      static const bool tinyness_before = false;      static const float_round_style round_style = round_toward_zero;    };  template<>    struct numeric_limits<char>    {      static const bool is_specialized = true;      static char min() throw()      { return __glibcpp_min(char); }      static char max() throw()      { return __glibcpp_max(char); }      static const int digits = __glibcpp_digits (char);      static const int digits10 = __glibcpp_digits10 (char);      static const bool is_signed = __glibcpp_signed (char);      static const bool is_integer = true;      static const bool is_exact = true;      static const int radix = 2;      static char epsilon() throw()      { return 0; }      static char round_error() throw()      { return 0; }      static const int min_exponent = 0;      static const int min_exponent10 = 0;      static const int max_exponent = 0;      static const int max_exponent10 = 0;      static const bool has_infinity = false;      static const bool has_quiet_NaN = false;      static const bool has_signaling_NaN = false;      static const float_denorm_style has_denorm = denorm_absent;      static const bool has_denorm_loss = false;      static char infinity() throw()      { return char(); }      static char quiet_NaN() throw()      { return char(); }      static char signaling_NaN() throw()      { return char(); }      static char denorm_min() throw()      { return static_cast<char>(0); }      static const bool is_iec559 = false;      static const bool is_bounded = true;      static const bool is_modulo = true;      static const bool traps = __glibcpp_integral_traps;      static const bool tinyness_before = false;      static const float_round_style round_style = round_toward_zero;    };  template<>    struct numeric_limits<signed char>    {      static const bool is_specialized = true;      static signed char min() throw()      { return -__SCHAR_MAX__ - 1; }      static signed char max() throw()      { return __SCHAR_MAX__; }      static const int digits = __glibcpp_digits (signed char);      static const int digits10 = __glibcpp_digits10 (signed char);      static const bool is_signed = true;      static const bool is_integer = true;      static const bool is_exact = true;      static const int radix = 2;      static signed char epsilon() throw()      { return 0; }      static signed char round_error() throw()      { return 0; }      static const int min_exponent = 0;      static const int min_exponent10 = 0;      static const int max_exponent = 0;      static const int max_exponent10 = 0;      static const bool has_infinity = false;      static const bool has_quiet_NaN = false;      static const bool has_signaling_NaN = false;      static const float_denorm_style has_denorm = denorm_absent;      static const bool has_denorm_loss = false;      static signed char infinity() throw()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -