⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stl_rope.h

📁 俄罗斯高人Mamaich的Pocket gcc编译器(运行在PocketPC上)的全部源代码。
💻 H
📖 第 1 页 / 共 5 页
字号:
            _RopeFunction* __space = typename _Base::_FAllocator(__a).allocate(1);            return new(__space) _RopeFunction(__f, __size, __d, __a);        }        static _RopeSubstring* _S_new_RopeSubstring(                _Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,                size_t __l, allocator_type __a)        {            _RopeSubstring* __space = typename _Base::_SAllocator(__a).allocate(1);            return new(__space) _RopeSubstring(__b, __s, __l, __a);        }          static          _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,                       size_t __size, allocator_type __a)#         define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \                _S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)             {            if (0 == __size) return 0;            _CharT* __buf = __a.allocate(_S_rounded_up_size(__size));            uninitialized_copy_n(__s, __size, __buf);            _S_cond_store_eos(__buf[__size]);            try {              return _S_new_RopeLeaf(__buf, __size, __a);            }            catch(...)	      {		_RopeRep::__STL_FREE_STRING(__buf, __size, __a);		__throw_exception_again;	      }        }                    // Concatenation of nonempty strings.        // Always builds a concatenation node.        // Rebalances if the result is too deep.        // Result has refcount 1.        // Does not increment left and right ref counts even though        // they are referenced.        static _RopeRep*        _S_tree_concat(_RopeRep* __left, _RopeRep* __right);        // Concatenation helper functions        static _RopeLeaf*        _S_leaf_concat_char_iter(_RopeLeaf* __r,                                 const _CharT* __iter, size_t __slen);                // Concatenate by copying leaf.                // should take an arbitrary iterator                // result has refcount 1.#       ifndef __GC          static _RopeLeaf* _S_destr_leaf_concat_char_iter                        (_RopeLeaf* __r, const _CharT* __iter, size_t __slen);          // A version that potentially clobbers __r if __r->_M_ref_count == 1.#       endif        private:        static size_t _S_char_ptr_len(const _CharT* __s);                        // slightly generalized strlen        rope(_RopeRep* __t, const allocator_type& __a = allocator_type())          : _Base(__t,__a) { }        // Copy __r to the _CharT buffer.        // Returns __buffer + __r->_M_size.        // Assumes that buffer is uninitialized.        static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);        // Again, with explicit starting position and length.        // Assumes that buffer is uninitialized.        static _CharT* _S_flatten(_RopeRep* __r,                                  size_t __start, size_t __len,                                  _CharT* __buffer);        static const unsigned long           _S_min_len[_RopeRep::_S_max_rope_depth + 1];        static bool _S_is_balanced(_RopeRep* __r)                { return (__r->_M_size >= _S_min_len[__r->_M_depth]); }        static bool _S_is_almost_balanced(_RopeRep* __r)                { return (__r->_M_depth == 0 ||                          __r->_M_size >= _S_min_len[__r->_M_depth - 1]); }        static bool _S_is_roughly_balanced(_RopeRep* __r)                { return (__r->_M_depth <= 1 ||                          __r->_M_size >= _S_min_len[__r->_M_depth - 2]); }        // Assumes the result is not empty.        static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,                                                     _RopeRep* __right)        {            _RopeRep* __result = _S_concat(__left, __right);            if (_S_is_balanced(__result)) __result->_M_is_balanced = true;            return __result;        }        // The basic rebalancing operation.  Logically copies the        // rope.  The result has refcount of 1.  The client will        // usually decrement the reference count of __r.        // The result is within height 2 of balanced by the above        // definition.        static _RopeRep* _S_balance(_RopeRep* __r);        // Add all unbalanced subtrees to the forest of balanceed trees.        // Used only by balance.        static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);                // Add __r to forest, assuming __r is already balanced.        static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);        // Print to stdout, exposing structure        static void _S_dump(_RopeRep* __r, int __indent = 0);        // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.        static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);   public:        bool empty() const { return 0 == _M_tree_ptr; }        // Comparison member function.  This is public only for those        // clients that need a ternary comparison.  Others        // should use the comparison operators below.        int compare(const rope& __y) const {            return _S_compare(_M_tree_ptr, __y._M_tree_ptr);        }        rope(const _CharT* __s, const allocator_type& __a = allocator_type())        : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),                                                 __a),__a)        { }        rope(const _CharT* __s, size_t __len,             const allocator_type& __a = allocator_type())        : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)        { }        // Should perhaps be templatized with respect to the iterator type        // and use Sequence_buffer.  (It should perhaps use sequence_buffer        // even now.)        rope(const _CharT *__s, const _CharT *__e,             const allocator_type& __a = allocator_type())        : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)        { }        rope(const const_iterator& __s, const const_iterator& __e,             const allocator_type& __a = allocator_type())        : _Base(_S_substring(__s._M_root, __s._M_current_pos,                             __e._M_current_pos), __a)        { }        rope(const iterator& __s, const iterator& __e,             const allocator_type& __a = allocator_type())        : _Base(_S_substring(__s._M_root, __s._M_current_pos,                             __e._M_current_pos), __a)        { }        rope(_CharT __c, const allocator_type& __a = allocator_type())        : _Base(__a)        {            _CharT* __buf = _Data_allocate(_S_rounded_up_size(1));            std::_Construct(__buf, __c);            try {                _M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);            }            catch(...)	      {		_RopeRep::__STL_FREE_STRING(__buf, 1, __a);		__throw_exception_again;	      }        }        rope(size_t __n, _CharT __c,             const allocator_type& __a = allocator_type());        rope(const allocator_type& __a = allocator_type())        : _Base(0, __a) {}        // Construct a rope from a function that can compute its members        rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,             const allocator_type& __a = allocator_type())            : _Base(__a)        {            _M_tree_ptr = (0 == __len) ?               0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);        }        rope(const rope& __x, const allocator_type& __a = allocator_type())        : _Base(__x._M_tree_ptr, __a)        {            _S_ref(_M_tree_ptr);        }        ~rope()        {            _S_unref(_M_tree_ptr);        }        rope& operator=(const rope& __x)        {            _RopeRep* __old = _M_tree_ptr;            _M_tree_ptr = __x._M_tree_ptr;            _S_ref(_M_tree_ptr);            _S_unref(__old);            return(*this);        }        void clear()        {            _S_unref(_M_tree_ptr);            _M_tree_ptr = 0;        }        void push_back(_CharT __x)        {            _RopeRep* __old = _M_tree_ptr;            _M_tree_ptr = _S_destr_concat_char_iter(_M_tree_ptr, &__x, 1);            _S_unref(__old);        }        void pop_back()        {            _RopeRep* __old = _M_tree_ptr;            _M_tree_ptr =               _S_substring(_M_tree_ptr, 0, _M_tree_ptr->_M_size - 1);            _S_unref(__old);        }        _CharT back() const        {            return _S_fetch(_M_tree_ptr, _M_tree_ptr->_M_size - 1);        }        void push_front(_CharT __x)        {            _RopeRep* __old = _M_tree_ptr;            _RopeRep* __left =              __STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, get_allocator());            try {              _M_tree_ptr = _S_concat(__left, _M_tree_ptr);              _S_unref(__old);              _S_unref(__left);            }            catch(...)	      {		_S_unref(__left);		__throw_exception_again;	      }        }        void pop_front()        {            _RopeRep* __old = _M_tree_ptr;            _M_tree_ptr = _S_substring(_M_tree_ptr, 1, _M_tree_ptr->_M_size);            _S_unref(__old);        }        _CharT front() const        {            return _S_fetch(_M_tree_ptr, 0);        }        void balance()        {            _RopeRep* __old = _M_tree_ptr;            _M_tree_ptr = _S_balance(_M_tree_ptr);            _S_unref(__old);        }        void copy(_CharT* __buffer) const {            _Destroy(__buffer, __buffer + size());            _S_flatten(_M_tree_ptr, __buffer);        }        // This is the copy function from the standard, but        // with the arguments reordered to make it consistent with the        // rest of the interface.        // Note that this guaranteed not to compile if the draft standard        // order is assumed.        size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const         {            size_t __size = size();            size_t __len = (__pos + __n > __size? __size - __pos : __n);            _Destroy(__buffer, __buffer + __len);            _S_flatten(_M_tree_ptr, __pos, __len, __buffer);            return __len;        }        // Print to stdout, exposing structure.  May be useful for        // performance debugging.        void dump() {            _S_dump(_M_tree_ptr);        }        // Convert to 0 terminated string in new allocated memory.        // Embedded 0s in the input do not terminate the copy.        const _CharT* c_str() const;        // As above, but lso use the flattened representation as the        // the new rope representation.        const _CharT* replace_with_c_str();        // Reclaim memory for the c_str generated flattened string.        // Intentionally undocumented, since it's hard to say when this        // is safe for multiple threads.        void delete_c_str () {            if (0 == _M_tree_ptr) return;            if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag &&                 ((_RopeLeaf*)_M_tree_ptr)->_M_data ==                       _M_tree_ptr->_M_c_string) {                // Representation shared                return;            }#           ifndef __GC              _M_tree_ptr->_M_free_c_string();#           endif            _M_tree_ptr->_M_c_string = 0;        }        _CharT operator[] (size_type __pos) const {            return _S_fetch(_M_tree_ptr, __pos);        }        _CharT at(size_type __pos) const {           // if (__pos >= size()) throw out_of_range;  // XXX           return (*this)[__pos];        }        const_iterator begin() const {            return(const_iterator(_M_tree_ptr, 0));        }        // An easy way to get a const iterator from a non-const container.        const_iterator const_begin() const {            return(const_iterator(_M_tree_ptr, 0));        }        const_iterator end() const {            return(const_iterator(_M_tree_ptr, size()));        }        const_iterator const_end() con

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -