📄 malloc.c
字号:
The main reason for using padding is to avoid calling sbrk so often. Having even a small pad greatly reduces the likelihood that nearly every malloc request during program start-up (or after trimming) will invoke sbrk, which needlessly wastes time. Automatic rounding-up to page-size units is normally sufficient to avoid measurable overhead, so the default is 0. However, in systems where sbrk is relatively slow, it can pay to increase this value, at the expense of carrying around more memory than the program needs.*/#ifndef DEFAULT_MMAP_THRESHOLD#define DEFAULT_MMAP_THRESHOLD (128 * 1024)#endif/* M_MMAP_THRESHOLD is the request size threshold for using mmap() to service a request. Requests of at least this size that cannot be allocated using already-existing space will be serviced via mmap. (If enough normal freed space already exists it is used instead.) Using mmap segregates relatively large chunks of memory so that they can be individually obtained and released from the host system. A request serviced through mmap is never reused by any other request (at least not directly; the system may just so happen to remap successive requests to the same locations). Segregating space in this way has the benefit that mmapped space can ALWAYS be individually released back to the system, which helps keep the system level memory demands of a long-lived program low. Mapped memory can never become `locked' between other chunks, as can happen with normally allocated chunks, which menas that even trimming via malloc_trim would not release them. However, it has the disadvantages that: 1. The space cannot be reclaimed, consolidated, and then used to service later requests, as happens with normal chunks. 2. It can lead to more wastage because of mmap page alignment requirements 3. It causes malloc performance to be more dependent on host system memory management support routines which may vary in implementation quality and may impose arbitrary limitations. Generally, servicing a request via normal malloc steps is faster than going through a system's mmap. All together, these considerations should lead you to use mmap only for relatively large requests.*/#ifndef DEFAULT_MMAP_MAX#if HAVE_MMAP#define DEFAULT_MMAP_MAX (1024)#else#define DEFAULT_MMAP_MAX (0)#endif#endif/* M_MMAP_MAX is the maximum number of requests to simultaneously service using mmap. This parameter exists because: 1. Some systems have a limited number of internal tables for use by mmap. 2. In most systems, overreliance on mmap can degrade overall performance. 3. If a program allocates many large regions, it is probably better off using normal sbrk-based allocation routines that can reclaim and reallocate normal heap memory. Using a small value allows transition into this mode after the first few allocations. Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, the default value is 0, and attempts to set it to non-zero values in mallopt will fail.*/#ifndef DEFAULT_CHECK_ACTION#define DEFAULT_CHECK_ACTION 1#endif/* What to do if the standard debugging hooks are in place and a corrupt pointer is detected: do nothing (0), print an error message (1), or call abort() (2). */#define HEAP_MIN_SIZE (32*1024)#define HEAP_MAX_SIZE (1024*1024) /* must be a power of two *//* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps that are dynamically created for multi-threaded programs. The maximum size must be a power of two, for fast determination of which heap belongs to a chunk. It should be much larger than the mmap threshold, so that requests with a size just below that threshold can be fulfilled without creating too many heaps.*/#ifndef THREAD_STATS#define THREAD_STATS 0#endif/* If THREAD_STATS is non-zero, some statistics on mutex locking are computed. *//* Macro to set errno. */#ifndef __set_errno# define __set_errno(val) errno = (val)#endif/* On some platforms we can compile internal, not exported functions better. Let the environment provide a macro and define it to be empty if it is not available. */#ifndef internal_function# define internal_function#endif/* Special defines for the Linux/GNU C library.*/#ifdef _LIBC#if __STD_CVoid_t * __default_morecore (ptrdiff_t);Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;#elseVoid_t * __default_morecore ();Void_t *(*__morecore)() = __default_morecore;#endif#define MORECORE (*__morecore)#define MORECORE_FAILURE 0#ifndef MORECORE_CLEARS#define MORECORE_CLEARS 1#endifstatic size_t __libc_pagesize;#define access __access#define mmap __mmap#define munmap __munmap#define mremap __mremap#define mprotect __mprotect#undef malloc_getpagesize#define malloc_getpagesize __libc_pagesize#else /* _LIBC */#if __STD_Cextern Void_t* sbrk(ptrdiff_t);#elseextern Void_t* sbrk();#endif#ifndef MORECORE#define MORECORE sbrk#endif#ifndef MORECORE_FAILURE#define MORECORE_FAILURE -1#endif#ifndef MORECORE_CLEARS#define MORECORE_CLEARS 1#endif#endif /* _LIBC */#ifdef _LIBC#define cALLOc __libc_calloc#define fREe __libc_free#define mALLOc __libc_malloc#define mEMALIGn __libc_memalign#define rEALLOc __libc_realloc#define vALLOc __libc_valloc#define pvALLOc __libc_pvalloc#define mALLINFo __libc_mallinfo#define mALLOPt __libc_mallopt#define mALLOC_STATs __malloc_stats#define mALLOC_USABLE_SIZe __malloc_usable_size#define mALLOC_TRIm __malloc_trim#define mALLOC_GET_STATe __malloc_get_state#define mALLOC_SET_STATe __malloc_set_state#else#define cALLOc calloc#define fREe free#define mALLOc malloc#define mEMALIGn memalign#define rEALLOc realloc#define vALLOc valloc#define pvALLOc pvalloc#define mALLINFo mallinfo#define mALLOPt mallopt#define mALLOC_STATs malloc_stats#define mALLOC_USABLE_SIZe malloc_usable_size#define mALLOC_TRIm malloc_trim#define mALLOC_GET_STATe malloc_get_state#define mALLOC_SET_STATe malloc_set_state#endif/* Public routines */#if __STD_C#ifndef _LIBCvoid ptmalloc_init(void);#endifVoid_t* mALLOc(size_t);void fREe(Void_t*);Void_t* rEALLOc(Void_t*, size_t);Void_t* mEMALIGn(size_t, size_t);Void_t* vALLOc(size_t);Void_t* pvALLOc(size_t);Void_t* cALLOc(size_t, size_t);void cfree(Void_t*);int mALLOC_TRIm(size_t);size_t mALLOC_USABLE_SIZe(Void_t*);void mALLOC_STATs(void);int mALLOPt(int, int);struct mallinfo mALLINFo(void);Void_t* mALLOC_GET_STATe(void);int mALLOC_SET_STATe(Void_t*);#else /* !__STD_C */#ifndef _LIBCvoid ptmalloc_init();#endifVoid_t* mALLOc();void fREe();Void_t* rEALLOc();Void_t* mEMALIGn();Void_t* vALLOc();Void_t* pvALLOc();Void_t* cALLOc();void cfree();int mALLOC_TRIm();size_t mALLOC_USABLE_SIZe();void mALLOC_STATs();int mALLOPt();struct mallinfo mALLINFo();Void_t* mALLOC_GET_STATe();int mALLOC_SET_STATe();#endif /* __STD_C */#ifdef __cplusplus} /* end of extern "C" */#endif#if !defined(NO_THREADS) && !HAVE_MMAP"Can't have threads support without mmap"#endif#if USE_ARENAS && !HAVE_MMAP"Can't have multiple arenas without mmap"#endif/* Type declarations*/struct malloc_chunk{ INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ struct malloc_chunk* fd; /* double links -- used only if free. */ struct malloc_chunk* bk;};typedef struct malloc_chunk* mchunkptr;/* malloc_chunk details: (The following includes lightly edited explanations by Colin Plumb.) Chunks of memory are maintained using a `boundary tag' method as described in e.g., Knuth or Standish. (See the paper by Paul Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such techniques.) Sizes of free chunks are stored both in the front of each chunk and at the end. This makes consolidating fragmented chunks into bigger chunks very fast. The size fields also hold bits representing whether chunks are free or in use. An allocated chunk looks like this: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk, if allocated | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of chunk, in bytes |P| mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | User data starts here... . . . . (malloc_usable_space() bytes) . . |nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where "chunk" is the front of the chunk for the purpose of most of the malloc code, but "mem" is the pointer that is returned to the user. "Nextchunk" is the beginning of the next contiguous chunk. Chunks always begin on even word boundaries, so the mem portion (which is returned to the user) is also on an even word boundary, and thus double-word aligned. Free chunks are stored in circular doubly-linked lists, and look like this: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `head:' | Size of chunk, in bytes |P| mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Forward pointer to next chunk in list | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Back pointer to previous chunk in list | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unused space (may be 0 bytes long) . . . . |nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `foot:' | Size of chunk, in bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The P (PREV_INUSE) bit, stored in the unused low-order bit of the chunk size (which is always a multiple of two words), is an in-use bit for the *previous* chunk. If that bit is *clear*, then the word before the current chunk size contains the previous chunk size, and can be used to find the front of the previous chunk. (The very first chunk allocated always has this bit set, preventing access to non-existent (or non-owned) memory.) Note that the `foot' of the current chunk is actually represented as the prev_size of the NEXT chunk. (This makes it easier to deal with alignments etc). The two exceptions to all this are 1. The special chunk `top', which doesn't bother using the trailing size field since there is no next contiguous chunk that would have to index off it. (After initialization, `top' is forced to always exist. If it would
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -