📄 cma101.c
字号:
/* * cma101.c -- lo-level support for Cogent CMA101 development board. * * Copyright (c) 1996, 2001, 2002 Cygnus Support * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */#ifdef __mips16/* The assembler portions of this file need to be re-written to support mips16, if and when that seems useful.*/#error cma101.c can not be compiled -mips16#endif#include <time.h> /* standard ANSI time routines *//* Normally these would appear in a header file for external use. However, we are only building a simple example world at the moment: */#include "regs.S"#if defined(MIPSEB)#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o) + 7)))#endif /* MIPSEB */#if defined(MIPSEL)#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o))))#endif /* MIPSEL *//* I/O addresses: */#define RTCLOCK_BASE (0x0E800000) /* Mk48T02 NVRAM/RTC */#define UART_BASE (0x0E900000) /* NS16C552 DUART */#define LCD_BASE (0x0EB00000) /* Alphanumeric display *//* LCD panel manifests: */#define LCD_DATA BYTEREG(LCD_BASE,0)#define LCD_CMD BYTEREG(LCD_BASE,8)#define LCD_STAT_BUSY (0x80)#define LCD_SET_DDADDR (0x80)/* RTC manifests *//* The lo-offsets are the NVRAM locations (0x7F8 bytes) */#define RTC_CONTROL BYTEREG(RTCLOCK_BASE,0x3FC0)#define RTC_SECS BYTEREG(RTCLOCK_BASE,0x3FC8)#define RTC_MINS BYTEREG(RTCLOCK_BASE,0x3FD0)#define RTC_HOURS BYTEREG(RTCLOCK_BASE,0x3FD8)#define RTC_DAY BYTEREG(RTCLOCK_BASE,0x3FE0)#define RTC_DATE BYTEREG(RTCLOCK_BASE,0x3FE8)#define RTC_MONTH BYTEREG(RTCLOCK_BASE,0x3FF0)#define RTC_YEAR BYTEREG(RTCLOCK_BASE,0x3FF8)#define RTC_CTL_LOCK_READ (0x40) /* lock RTC whilst reading */#define RTC_CTL_LOCK_WRITE (0x80) /* lock RTC whilst writing *//* Macro to force out-standing memory transfers to complete before next sequence. For the moment we assume that the processor in the CMA101 board supports at least ISA II. */#define DOSYNC() asm(" .set mips2 ; sync ; .set mips0")/* We disable interrupts by writing zero to all of the masks, and the global interrupt enable bit: */#define INTDISABLE(sr,tmp) asm("\ .set mips2 ; \ mfc0 %0,$12 ; \ lui %1,0xffff ; \ ori %1,%1,0xfffe ; \ and %1, %0, %1 ; \ mtc0 %1,$12 ; \ .set mips0" : "=d" (sr), "=d" (tmp))#define INTRESTORE(sr) asm("\ .set mips2 ; \ mtc0 %0,$12 ; \ .set mips0" : : "d" (sr))/* TODO:FIXME: The CPU card support should be in separate source file from the standard CMA101 support provided in this file. *//* The CMA101 board being used contains a CMA257 Vr4300 CPU: MasterClock is at 33MHz. PClock is derived from MasterClock by multiplying by the ratio defined by the DivMode pins: DivMode(1:0) MasterClock PClock Ratio 00 100MHz 100MHz 1:1 01 100MHz 150MHz 1.5:1 10 100MHz 200MHz 2:1 11 100Mhz 300MHz 3:1 Are these pins reflected in the EC bits in the CONFIG register? or is that talking about a different clock multiplier? 110 = 1 111 = 1.5 000 = 2 001 = 3 (all other values are undefined)*/#define MASTERCLOCK (33) /* ticks per uS */unsigned int pclock; /* number of PClock ticks per uS */voidset_pclock (void){ unsigned int config; asm volatile ("mfc0 %0,$16 ; nop ; nop" : "=r" (config)); /* nasty CP0 register constant */ switch ((config >> 28) & 0x7) { case 0x7 : /* 1.5:1 */ pclock = (MASTERCLOCK + (MASTERCLOCK / 2)); break; case 0x0 : /* 2:1 */ pclock = (2 * MASTERCLOCK); break; case 0x1 : /* 3:1 */ pclock = (3 * MASTERCLOCK); break; case 0x6 : /* 1:1 */ default : /* invalid configuration, so assume the lowest */ pclock = MASTERCLOCK; break; } return;}#define PCLOCK_WAIT(x) __cpu_timer_poll((x) * pclock)/* NOTE: On the Cogent CMA101 board the LCD controller will sometimes return not-busy, even though it is. The work-around is to perform a ~50uS delay before checking the busy signal. */static intlcd_busy (void){ PCLOCK_WAIT(50); /* 50uS delay */ return(*LCD_CMD & LCD_STAT_BUSY);}/* Note: This code *ASSUMES* that the LCD has already been initialised by the monitor. It only provides code to write to the LCD, and is not a complete device driver. */voidlcd_display (int line, const char *msg){ int n; if (lcd_busy ()) return; *LCD_CMD = (LCD_SET_DDADDR | (line == 1 ? 0x40 : 0x00)); for (n = 0; n < 16; n++) { if (lcd_busy ()) return; if (*msg) *LCD_DATA = *msg++; else *LCD_DATA = ' '; } return;}#define SM_PATTERN (0x55AA55AA)#define SM_INCR ((256 << 10) / sizeof(unsigned int)) /* 64K words */extern unsigned int __buserr_count(void);extern void __default_buserr_handler(void);extern void __restore_buserr_handler(void);/* Allow the user to provide his/her own defaults. */unsigned int __sizemem_default;unsigned int__sizemem (){ volatile unsigned int *base; volatile unsigned int *probe; unsigned int baseorig; unsigned int sr; extern void *end; char *endptr = (char *)&end; int extra; /* If the linker script provided a value for the memory size (or the user overrode it in a debugger), use that. */ if (__sizemem_default) return __sizemem_default; /* If we are running in kernel segment 0 (possibly cached), try sizing memory in kernel segment 1 (uncached) to avoid some problems with monitors. */ if (endptr >= K0BASE_ADDR && endptr < K1BASE_ADDR) endptr = (endptr - K0BASE_ADDR) + K1BASE_ADDR; INTDISABLE(sr,baseorig); /* disable all interrupt masks */ __default_buserr_handler(); __cpu_flush(); DOSYNC(); /* _end is the end of the user program. _end may not be properly aligned for an int pointer, so we adjust the address to make sure it is safe. We use void * arithmetic to avoid accidentally truncating the pointer. */ extra = ((int) endptr & (sizeof (int) - 1)); base = ((void *) endptr + sizeof (int) - extra); baseorig = *base; *base = SM_PATTERN; /* This assumes that the instructions fetched between the store, and the following read will have changed the data bus contents: */ if (*base == SM_PATTERN) { probe = base; for (;;) { unsigned int probeorig; probe += SM_INCR; probeorig = *probe; /* Check if a bus error occurred: */ if (!__buserr_count()) { *probe = SM_PATTERN; DOSYNC(); if (*probe == SM_PATTERN) { *probe = ~SM_PATTERN; DOSYNC(); if (*probe == ~SM_PATTERN) { if (*base == SM_PATTERN) { *probe = probeorig; continue; } } } *probe = probeorig; } break; } } *base = baseorig; __restore_buserr_handler(); __cpu_flush(); DOSYNC(); INTRESTORE(sr); /* restore interrupt mask to entry state */ return((probe - base) * sizeof(unsigned int));}/* Provided as a function, so as to avoid reading the I/O location multiple times: */static intconvertbcd(byte) unsigned char byte;{ return ((((byte >> 4) & 0xF) * 10) + (byte & 0xF));}time_ttime (_timer) time_t *_timer;{ time_t result = 0; struct tm tm; *RTC_CONTROL |= RTC_CTL_LOCK_READ; DOSYNC(); tm.tm_sec = convertbcd(*RTC_SECS); tm.tm_min = convertbcd(*RTC_MINS); tm.tm_hour = convertbcd(*RTC_HOURS); tm.tm_mday = convertbcd(*RTC_DATE); tm.tm_mon = convertbcd(*RTC_MONTH); tm.tm_year = convertbcd(*RTC_YEAR); DOSYNC(); *RTC_CONTROL &= ~(RTC_CTL_LOCK_READ | RTC_CTL_LOCK_WRITE); tm.tm_isdst = 0; /* Check for invalid time information */ if ((tm.tm_sec < 60) && (tm.tm_min < 60) && (tm.tm_hour < 24) && (tm.tm_mday < 32) && (tm.tm_mon < 13)) { /* Get the correct year number, but keep it in YEAR-1900 form: */ if (tm.tm_year < 70) tm.tm_year += 100;#if 0 /* NOTE: mon_printf() can only accept 4 arguments (format string + 3 fields) */ mon_printf("[DBG: s=%d m=%d h=%d]", tm.tm_sec, tm.tm_min, tm.tm_hour); mon_printf("[DBG: d=%d m=%d y=%d]", tm.tm_mday, tm.tm_mon, tm.tm_year);#endif /* Convert the time-structure into a second count */ result = mktime (&tm); } if (_timer != NULL) *_timer = result; return (result);}/*> EOF cma101.c <*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -