📄 fd_mul16.asm
字号:
;******************************************************************************
;* FD_MUL16.ASM - 16 BIT STATE - v2.54 *
;* Copyright (c) 1996-2004 Texas Instruments Incorporated *
;******************************************************************************
;****************************************************************************
;* FD$MUL - MULTIPLY TWO IEEE 754 FORMAT DOUBLE PRECISION FLOATING
;* POINT NUMBERS.
;****************************************************************************
;*
;* o INPUT OP1 IS IN r0:r1
;* o INPUT OP2 IS IN r2:r3
;* o RESULT IS RETURNED IN r0:r1
;* o INPUT OP2 IN r2:r3 IS NOT DESTROYED
;*
;* o SIGNALLING NOT-A-NUMBER (SNaN) AND QUIET NOT-A-NUMBER (QNaN)
;* ARE TREATED AS INFINITY
;* o OVERFLOW RETURNS +/- INFINITY
;* (0x7ff00000:00000000) or (0xfff00000:00000000)
;* o UNDERFLOW RETURNS ZERO (0x00000000:00000000)
;* o DENORMALIZED NUMBERS ARE TREATED AS UNDERFLOWS
;* o ROUNDING MODE: ROUND TO NEAREST
;*
;* o IF THE OPERATION INVOLVES INFINITY AS AN INPUT, UNLESS THE OTHER INPUT
;* IS ZERO, THE RESULT IS INFINITY WITH THE SIGN DETERMINED IN THE USUAL
;* FASHION.
;*
;****************************************************************************
;*
;* +------------------------------------------------------------------+
;* | DOUBLE PRECISION FLOATING POINT FORMAT |
;* | 64-bit representation |
;* | 31 30 20 19 0 |
;* | +-+----------+---------------------+ |
;* | |S| E | M1 | |
;* | +-+----------+---------------------+ |
;* | |
;* | 31 0 |
;* | +----------------------------------+ |
;* | | M2 | |
;* | +----------------------------------+ |
;* | |
;* | <S> SIGN FIELD : 0 - POSITIVE VALUE |
;* | 1 - NEGATIVE VALUE |
;* | |
;* | <E> EXPONENT FIELD: 0000000000 - ZERO IFF M == 0 |
;* | 0000000001..1111111110 - EXPONENT VALUE(1023 BIAS) |
;* | 1111111111 - INFINITY |
;* | |
;* | <M1:M2> MANTISSA FIELDS: FRACTIONAL MAGNITUDE WITH IMPLIED 1 |
;* +------------------------------------------------------------------+
;*
;****************************************************************************
.state16
.global FD$MUL
res1 .set r0 ; OVERLOADED WITH INPUT #1
op1e .set r1 ; OVERLOADED WITH INPUT #1
op1m1 .set r2 ; OVERLOADED WITH INPUT #2
op1m2 .set r3 ; OVERLOADED WITH INPUT #2
tmp .set r4
op2m1 .set r5
op2m2 .set r6
op2e .set r7
res2 .set r7 ; OVERLOADED WITH op2e
FD$MUL: .asmfunc stack_usage(32)
PUSH {r2-r7, lr} ;
MOV tmp, r0 ; SET THE SIGN OF THE RESULT
EOR tmp, r2 ;
LSR tmp, tmp, #31 ;
LSL tmp, tmp, #31 ;
PUSH {tmp} ;
LSL op2m1, r2, #11 ; BUILD INPUT #2 MANTISSA
LSR tmp, r3, #21 ;
ORR op2m1, tmp ;
LSL op2m2, r3, #11 ;
LSL op2e, r2, #1 ; BUILD INPUT #2 EXPONENT
LSR op2e, op2e, #21 ;
BEQ unfl ;
MOV tmp, #0x1 ;
LSL tmp, tmp, #31 ; SET IMPLIED ONE IN MANTISSA
ORR op2m1, tmp ;
MOV tmp, #0x7 ;
LSL tmp, tmp, #8 ;
ADD tmp, #0xFF ;
CMP op2e, tmp ; IF op2e == 0x7FF, THEN OVERFLOW
BEQ ovfl ;
LSL op1m1, r0, #11 ; BUILD INPUT #1 MANTISSA
LSR tmp, r1, #21 ;
ORR op1m1, tmp ;
LSL op1m2, r1, #11 ;
LSL op1e, r0, #1 ; BUILD INPUT #1 EXPONENT
LSR op1e, op1e, #21 ;
BEQ unfl ;
MOV tmp, #0x1 ; SET IMPLIED ONE IN MANTISSA
LSL tmp, tmp, #31 ;
ORR op1m1, tmp ;
MOV tmp, #0x7 ;
LSL tmp, tmp, #8 ;
ADD tmp, #0xFF ;
CMP op1e, tmp ; IF op1e == 0x7FF, THEN OVERFLOW
BEQ ovfl ;
ADD op1e, op1e, op2e ; ADD EXPONENTS
NOP ;
BX pc ; CHANGE TO 32 BIT STATE FOR MULTIPLY
NOP ;
.state32
; MULTIPLY THE MANTISAE: op1m * op2m => res1:res2
UMULL res2, res1, op1m1, op2m1 ; op1m1*op2m1 =>res1:res2: 0 : 0
UMULL tmp, op1m1, op2m2, op1m1 ; op1m1*op2m2 => 0 :op1m1:tmp : 0
UMULL lr, op2m2, op1m2, op2m2 ; op1m2*op2m2 => 0 : 0 :op2m2: lr
UMULL lr, op2m1, op1m2, op2m1 ; op1m2*op2m1 => 0 :op2m1: lr : 0
ADDS op2m2, op2m2, lr ; 0 : 0 :op2m2: 0
MOV op1m2, #0x0 ;
ADD lr, pc, #0x1 ; CHANGE BACK TO 16 BIT STATE
BX lr ;
.state16
ADC op2m1, op1m2 ; 0 :op2m1: 0 : 0
ADC res1, op1m2 ; res1: 0 : 0 : 0
ADD tmp, op2m2 ; 0 : 0 : tmp : 0
ADC op2m1, op1m2 ; 0 :op2m1: 0 : 0
ADC res1, op1m2 ; res1: 0 : 0 : 0
MOV tmp, #0x80 ; SETUP 1/2 CONSTANT FOR ROUNDING
LSL tmp, tmp, #2 ;
ADD op1m1, op2m1 ; 0 :op1m1: 0 : 0
ADC res1, op1m2 ; res1: 0 : 0 : 0
ADD res2, op1m1 ; 0 :res2: 0 : 0
ADC res1, op1m2 ; res1: 0 : 0 : 0
BPL $1 ; IF THE MANTISSA WILL NOT NEED
LSL tmp, tmp, #0x1 ; ALIGNMENT, ADJUST 1/2 CONSTANT.
$1: ADD res2, res2, tmp ; ADD 1/2 FOR ROUNDING
ADC res1, op1m2 ;
BMI $2 ; ALIGN THE RESULT
LSL res2, res2, #1 ;
ADC res1, res1 ;
B $3 ;
$2: ADD op1e, op1e, #0x1 ;
$3: MOV tmp, #0x3 ;
LSL tmp, tmp, #8 ;
ADD tmp, #0xFF ;
SUB op1e, op1e, tmp ; ADJUST FOR BIAS
BLE unfl ; AND CHECK FOR UNDERFLOW
ADD tmp, tmp, tmp ;
CMP op1e, tmp ; AND CHECK FOR EXPONENT OVERFLOW
BHI ovfl ;
LSL op1m1, op1e, #20 ; ALIGN EXPONENT INTO op1m1
LSR r1, res2, #11 ; REPACK LOW PART OF RESULT
LSL tmp, res1, #21 ;
ORR r1, tmp ;
LSL r0, res1, #1 ; REPACK HIGH PART OF RESULT
LSR r0, r0, #12 ;
ORR r0, op1m1 ; REPACK THE EXPONENT INTO r0
POP {tmp} ;
ORR r0, tmp ; REPACK THE SIGN INTO r0
POP {r2-r7, pc} ;
ovfl: MOV r1, #0 ; IF OVERFLOW, RETURN +/- INFINITY
MOV r0, #0xFF
LSL r0, r0, #3
ADD r0, r0, #7
LSL r0, r0, #20
POP {tmp} ;
ORR r0, tmp ;
POP {r2-r7, pc} ;
unfl: MOV r0, #0 ; UNDERFLOW, SO RETURN ZERO
MOV r1, #0 ;
ADD sp, #4 ;
POP {r2-r7, pc} ;
.endasmfunc
.end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -